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Content

1. Fundamental concepts of speaker recognition.

2. Methods for self-supervised learning (SSL) models for speaker recognition 

(and some anti-spoofing, aka deepfake detection).

3. Pruning SSL models while finetuning them for speaker recognition and 

anti-spoofing.

4. Training Speaker Embedding Extractors directly from the original uncut 

VoxCeleb recordings.
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● Speaker embeddings are low-dimensional vectors extracted from deep neural networks, aiming at 

capturing the unique voice characteristics of a person. 

● As such, they should be invariant to 

○ intrinsic variability (e.g. phonetic content, emotion, health conditions)

○ extrinsic variability (e.g. background noise, microphone, distance/angle from the mic) 

● Speaker embeddings are ubiquitous in speech technology:

○ recognition tasks (e.g. speaker verification, diarization, and target speaker extraction) 

○ generative tasks (e.g. text-to-speech synthesis, voice conversion, and speaker anonymization).

● In this talk, the focus will be on speaker verification:

○ Given two single-speaker recordings, estimate whether or not the speaker is the same in both of 

them.

About speaker embeddings
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Convolutional Neural Nets for speaker modeling

● In 1-D CNNs (TDNNs), the kernel is shifted only along the time axis.
○ The statistics pooling returns stats (e.g. mean and std) per channel.

● In 2-D CNNs (e.g. ResNets), the kernel is shifted along both the time and frequency axes.
○ Consider the log-spectrum as an image. 
○ The statistics pooling returns stats per channel-frequency pair.
○ The number of frequency bins is progressively reduced via strides

● The speaker embedding is a compressed version of the statistics vector (e.g. 256-dim). 4



Angular-margin losses

Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." CVPR 2019.

With AAM loss, the cosine similarity is typically enough, at least in certain datasets
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SSL models in speech applications

Mohamed, Abdelrahman, et al. "Self-supervised speech representation learning: A review." IEEE Journal of Selected Topics in 
Signal Processing 16.6 (2022): 1179-1210. 6



SSL models in speech applications

Mohamed, Abdelrahman, et al. "Self-supervised speech representation learning: A review." IEEE Journal of Selected Topics in 
Signal Processing 16.6 (2022): 1179-1210.

Wav2Vec 2.0 HuBERT WavLM

7



Peng, Junyi, et al. "An attention-based backend allowing efficient fine-tuning of transformer models for speaker verification." SLT 2022

Standard ways for pooling information from transformers
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● Simple backend with multihead 
attention (64 heads). 

● Each head models an acoustic 
area via a trainable query 
vector. 

● Two different layer-pooling 
weights (keys and values). 

○ Values should contain 
speaker information. 

○ Keys should not. 

Pooling via multi-head factor attention (MHFA)

Values
Keys

Peng, Junyi, et al. "An attention-based backend allowing efficient fine-tuning of transformer models for speaker verification." SLT 2022
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Pooling via multi-head factor attention (MHFA)

Peng, Junyi, et al. "An attention-based backend allowing efficient fine-tuning of transformer models for speaker verification." SLT 2022
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Context-aware MHFA - Adding 1D conv to the keys…

Peng, Junyi & Mošner, Ladislav & Zhang, Lin & Plchot, Oldřich & Stafylakis, Themos & Burget, Lukas & Černocký, Jan. (2025). 
CA-MHFA: A Context-Aware Multi-Head Factorized Attentive Pooling for SSL-Based Speaker Verification. 1-5. 10.1109/ICASSP 2025
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• VoxCeleb1: CA-MHFA outperforms ECAPA-TDNN while using only ≈20% of its parameters. 
• IEMOCAP: +2–3% absolute accuracy vs. baseline.
• ASVspoof19: consistently lower EER.
• Works across multiple upstream SSL models (HuBERT, Data2vec, WavLM). 

Results-SUPERB Evaluation across different SSL Models

Peng, Junyi & Mošner, Ladislav & Zhang, Lin & Plchot, Oldřich & Stafylakis, Themos & Burget, Lukas & Černocký, Jan. (2025). 
CA-MHFA: A Context-Aware Multi-Head Factorized Attentive Pooling for SSL-Based Speaker Verification. 1-5. 10.1109/ICASSP 2025
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Results after SSL finetuning

Peng, Junyi & Mošner, Ladislav & Zhang, Lin & Plchot, Oldřich & Stafylakis, Themos & Burget, Lukas & Černocký, Jan. (2025). 
CA-MHFA: A Context-Aware Multi-Head Factorized Attentive Pooling for SSL-Based Speaker Verification. 1-5. 10.1109/ICASSP 2025
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Hybrid Pruning: In-situ Compression of Self-Supervised 
Speech Models for Speaker Verification and 

Anti-Spoofing

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.

Self-Supervised Learning (SSL) models like WavLM are SOTA in speech 
processing tasks.

● They excel in speaker verification (SV) and anti-spoofing.
● However, their size is problematic

○ WavLM-Base has ~94 million parameters.
○ WavLM-Large has >300 million parameters.

This large size makes them difficult to deploy on resource-constrained 
devices like mobile phones or edge systems. Also, hard to do inference on 
CPU-nodes (high latency). 
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Existing Solutions & Their Limitations

Current model compression (pruning) methods are often complex and suboptimal. They typically follow a 
multi-stage pipeline:

1. Task-Agnostic Pruning: The model is pruned during pre-training, without knowledge of the final task 
(e.g., speaker verification).

2. Post-hoc Pruning: The model is first fully fine-tuned for a task, and then pruned as a separate, later 
step.

Key Drawback: This separation prevents the model from learning the best possible compressed 
architecture specifically for the end task. 

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.
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Existing Solutions & Their Limitations

Our single-stage approach 
jointly optimizes for the 
downstream task with the 
downstream back-end.

This avoids multi-stage 
pipelines like (b) task-agnostic 
pre-training pruning and (c) 
post-hoc pruning. 

Notably, our method does not 
require the teacher-student 
knowledge distillation, 
common in other pruning 
techniques.

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.
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How HP Works: Joint Optimization

The key is in the loss function, which guides the model's learning.

● Ltask (Task Loss): This is the standard loss for the downstream task (e.g., Binary Cross-Entropy 
for anti-spoofing). It pushes the model to be accurate.

● Rprune (Pruning Regularizer): This term uses learnable "stochastic gates" to encourage parts of 
the model to be turned off. It pushes the model to be small and simple.

By optimizing both simultaneously, the model finds the best trade-off between accuracy and size.

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.
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Pruning based on the hard Concrete distribution

● We augment this model by inserting learnable stochastic gates at each of its prunable structural 
components (in CNN, MHSA and FFN). 

● Each multiplicative gate is a continuous random variable zj ∈ [0, 1] following a distribution having 
delta peaks at 0 and 1 (hard concrete).

● zj is the output of a nonlinear monotonic function (Sigmoid, affine and clamp(s,0,1)) of a trainable 
parameter αj and a noise variable u (plus 3 other trainable global parameters). 

C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks through L0 regularization,” in ICLR 2018. 18



Pruning based on the hard Concrete distribution

● So the Hard Concrete is a continuous relaxation of the discrete Bernoulli distribution.

● The αj’s receive non-zero gradients also from the Ltask, when zj is not 0 or 1.

● This allows the network to learn, via gradient descent, to “turn off” (zj=0) certain components.

● The CDF of the Hard Concrete is used to calculate Rprune, which pushes αj towards smaller values.

● After training, zj is determined by αj and the other 3 trainable model parameters.

● Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. "The Concrete Distribution: A Continuous Relaxation of Discrete 

Random Variables," in ICLR 2017.

● C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks through L0 regularization,” in ICLR 2018.

● Z. Wang, J. Wohlwend, and T. Lei, “Structured pruning of large language models,” in EMNLP 2020.

Key papers to dive deeper into the method
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Compression & Performance in Speaker Verification

● At 70% sparsity the model achieves EER = 1.61% on Vox1-H, close to the unpruned model's 1.40%.
● This results in a 2.6x speedup on a CPU and 2.9x on a GPU.

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.
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Compression & Performance in Deepfake Detection

● The EER results in the ASVSpoof5 eval sets varied across different sparsity targets. 

● FLOPs are calculated based on a 4-second audio input.

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.
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Pruning as a Regularizer

A interesting finding is that moderate 
pruning can improve generalization, 
especially on smaller datasets.

● On the CNCeleb (SV) and 
SpoofCeleb (anti-spoofing) 
datasets, the EER follows a 
"U-shaped" curve.

Why? Large SSL models can easily 
overfit to smaller downstream datasets. 

By removing redundant parameters, HP reduces the model's capacity in a controlled way, forcing it to 
learn more robust and essential features.

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.
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Learning Task-Specific Architectures
HP learns specialized sub-architectures tailored to the task and domain.

Peng, Junyi, et al. "Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing." 
arXiv preprint arXiv:2508.16232 (2025). Submitted to ICASSP 2026.
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State-of-the-art Embeddings with Video-free 
Segmentation of the Source VoxCeleb Data

Sara Barahona, Ladislav Mošner, Themos Stafylakis, Oldřich Plchot, 
Junyi Peng, Lukáš Burget, Jan Černocký

Follow-up work of: 
Stafylakis, T., Mosner, L., Plchot, O., Rohdin, J., Silnova, A., Burget, L., & Černocký, J. (2022). Training speaker 
embedding extractors using multi-speaker audio with unknown speaker boundaries. In Proc. Interspeech 2022.



Motivation

How the VoxCeleb dataset was created:

● YouTube: search for celebrities

● ResNet50-based face recognizer

● SyncNet (active speaker verification)

● Minor human verification

● Precision maximized at the expense 

of recall

A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale speaker identification dataset,” Interspeech 2017. 25



Weaknesses of the VoxCeleb pipeline

● Inevitable rejection of speech segments

○ When the celebrity’s face does not appear

● Not applicable to speech-only databases

○ Telephone conversations

○ Radio broadcast

A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale speaker identification dataset,” Interspeech 2017. 26



Weakly labeled data

● Can we detect the speech chunks where the celebrities are talking without the visual 

component or pretrained extractors?

● We assume we know who of the celebrities appear in each recording.

○ But we do not know when they are talking.

● Moreover, there are other people appearing in the recording (e.g. interviewers).

○ We assume no info about them. 

● If we are able to detect them, then we can train a new extractor from scratch using these 

speech chunks. 

● Maybe, the other speakers appearing in the recordings can be used to improve the 

embedding extractor. 
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Method outline

Two stages

● Detect speech chunks of the target speakers (celebrities)

○ Basic speaker diarization algorithm (no pre-trained models used)

■ Assumption: clusters of high purity, low speaker coverage

○ Train a network with an aggregation function over clusters

○ Select chunks corresponding to the celebrity of interest

● Supervised training with the detected speech chunks

○ Train a new extractor from scratch using standard supervised training

■ Possibly, add chunks from other unknown speakers (as unknown class)
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Basic speaker diarization

● Minimization of the need for annotation:

○ non-trainable diarization, no tuning

○ speaker change detection

○ BIC-based HAC with Gaussians on MFCCs

○ Viterbi-based boundary refinement (using GMMs)

● Over-estimation of the number of speakers

● SIDEKIT: https://projets-lium.univ-lemans.fr/s4d/

Steps of the baseline diarization algorithm 29



Training the embedding extractor with weak labels

● Denote the clusters or the recording by

● We want to maximize the probability of the target speaker 

● We introduce a discrete latent variable                            and marginalize it.

● where

● We approximate the (log) joint                 with the logit, i.e. the dot product between 

embedding of xc and s-th speaker prototype: 
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Aggregating logits with log-sum-exp

●  The posterior becomes:

●  As usual, we are training by minimizing the cross-entropy:

●  We call this aggregation (over clusters) method log-sum-exp (LSE) pooling.
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Aggregating logits with max pooling

● We may also do temperature scaling 

● The limit for τ → 0 results in max pooling over clusters-specific logits:

● Max pooling is hard assignment, while LSE is soft assignment.

● In our latest set of experiments, max pooling outperformed LSE pooling.

● We didn’t try max pooling followed by LSE (similar to Viterbi followed by Baum Welch).

● Note: in practice we are using a random segment xc of 4 sec instead of the whole cluster. A different 

augmentation configuration (noisy, reverberation) is sampled for each cluster. 32



What error signal are we backpropagating?

● Let’s derive the gradients:

● where

Therefore, 

● we estimate the posterior over speakers                  using the chosen aggregation method.

● we backpropagate the error signal to clusters using                    as weight

○                : posterior of cluster c given s and X.

● with max pooling, for each training speaker s (target and non-target) we are backpropagating only 

through the xc that corresponds to the argmax cluster for s.  33



Chunk attribution to training speakers

● Once the embedding extractor is trained we need to attribute segments to target speakers.

● For each recording, we attribute a cluster to the target speaker s* iff 

● In fact, we are doing it with chunks instead of clusters, to compensate for errors in diarization.

Dev. set Celebrities Recordings Hours

Original 5,994 145,569 2,369.0

Restricted 5,987 110,940 1,884.3

Uncut 5,987 110,940 10,211.6

Self-labeled 5,987 110,453 6,026.9
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Using non-target speaker segments

● How can we ensure that those remaining chunks are not from the target speaker?

○ We keep only chunks for which the target speaker logit in not within the top-5 logits.

● Defining a speaker prototype for the unknown class (containing numerous speakers) seems weird.

○ Especially when AAM loss is used.
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Using non-target speaker segments

● We work as if there was a speaker prototype for this specific unknown speaker:

○ We do not create any additional speaker prototype.

○ In each minibatch, we calculate the average target-speaker logit from the chunks having a known 

target speaker (how well embeddings and corresponding prototypes match on average). 

○ For chunks of the unknown class, we set the “target” logit equal to the average target-speaker logit.

● This should result in: 

○ increasing the distance between prototypes and unknown speaker embeddings

○ strengthening the speaker discriminability of the extractor.
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Experimental setup

● Embedding extractor

○ ResNet34: (64, 128, 256, 256) channels in ResNet stages

○ Instance (instead of batch) normalization

○ 400 frames, 80-dim fbanks

○ 256-dim speaker embeddings

● Aggregation 

○ Max pooling or LSE

● Training on estimated speech chunks

○ The same architecture is used (without the aggregation)

○ Higher margin in AAM loss (m=0.3)
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Strong vs weak supervision - ResNet34

● The weakly supervised networks appear not competitive
○ However, their purpose is not to generalize well to new speakers
○ Their purpose is to find the speech chunks of the target speakers in the training set

● Training without margin at this stage improves max-pooling performance
● SOTA diarization (Pyannote) provides a moderate improvement

Supervision Data Diarization m Agg./τ
Vox1-O Vox1-E Vox1-H

EER EER EER

Strong Restr. ↑0.3 – 1.11 1.13 2.07

Weak Uncut S4D 0.0 Max / – 3.00 2.86 4.60

Weak Uncut S4D 0.1 LSE / 0.5 4.33 6.39 9.99

Weak Uncut S4D 0.1 LSE / ↓0.1 4.53 4.86 7.31

Weak Uncut Pyannote 0.0 Max / – 2.55 2.37 3.93
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Strong vs weak supervision - WavLM + MHFA

● Diarization with S4D

● Performance much closer to strong-supervision training

● Max-pooling achieves the best results

Supervision Data m Agg./τ
Vox1-O Vox1-E Vox1-H

EER EER EER

Strong Restricted ↑0.3 – 0.86 0.86 1.78

Weak Uncut 0.0 Max / – 1.51 1.76 3.36

Weak Uncut 0.0 LSE / ↓0.1 3.59 3.10 5.60

Weak Uncut 0.1 Max / – 1.25 1.36 2.55

Weak Uncut 0.1 LSE / ↓0.1 3.82 3.71 5.86
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Training with self-labeled data

● ResNet34: training with self-labels outperforms training on VoxCeleb cuts  
● WavLM + MHFA: top accuracy with VoxCeleb cuts, but self-labeled very close
● Adding the “unknown” class with unlabeled chunks further improves performance

Model Data
Vox1-O Vox1-E Vox1-H

EER M.DCF EER M.DCF EER M.DCF

ResNet34 Restricted 1.11 0.064 1.13 0.073 2.07 0.121

Self-labeled 0.99 0.054 1.02 0.065 1.83 0.107

WavLM + MHFA Restricted 0.86 0.065 0.86 0.057 1.78 0.111

Self-labeled 0.83 0.062 0.92 0.062 1.91 0.121

+ Unknown class 0.83 0.061 0.92 0.058 1.86 0.117
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Conclusions & Future Directions

● Conclusions

○ We proposed an approach to training an embedding extractor using weakly labeled data

○ We examined two aggregation methods

○ We achieved results close or better to supervised training with original VoxCeleb cuts

● Future Directions

○ Attention-based aggregation

○ Include recordings with >1 celebrity (straightforward)

○ Alternative chunk selection policies

○ Apply one more iteration: 

■ redo everything using the trained extractor as starting point 
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Thanks! 
Happy to hear your thoughts! 

Themos Stafylakis
tstafylakis@aueb.gr

tstafylakis@omilia.com
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