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Taxonomy of Speech Feature Extractor
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Overall Architecture of a Standard Audio Tokenizer.
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Audio Tokens 
● Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, 

and many other audio details.

● Benefits of discrete audio tokens:
○ Storage benefits
○ Efficient transmission
○ Simplify audio generation task
○ Faster inference 
○ Easier integration to LLMs and multimodal models
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Motivation
● Traditional audio codecs rely heavily on domain knowledge, combining signal 

processing pipelines with hand-crafted components to achieve efficient but lossy 
compression.
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● This has motivated a shift toward data-driven approaches with deep learning, known 
as neural codecs.

● Many audio tokenizers are proposed in last 3 years.

Adopted from Codec SUPERB



11



Our contribution is organized into three core studies!
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Study 1: 
Audio Tokenizer Taxonomy
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Traditional Taxonomy of Speech Discrete Tokenizer
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What is the Problem?
● We argue the common division of discrete tokens into acoustic and semantic 

categories has notable limitations.
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● Acoustic tokenizers can capture semantic information , while semantic tokenizers 
have been effectively used in generative task.

● This overlap blurs the boundary between the two categories

●  It fail to capture key architectural differences and practical tradeoffs.



Refined Taxonomy of Speech Discrete Tokenizer
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Quantization
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Quantization Algorithm

K-means : 

● It is frequently used for post-training quantization.
● Select one or more layers from a pretrained SSL model → apply offline k-means 

clustering → assign cluster IDs as discrete tokens.

24



Quantization Algorithm

Residual Vector Quantization (RVQ)

●  RVQ maps each frame-wise feature to the closest entry in a codebook and then 
refines this process by computing the residual after quantization.
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Quantization Algorithm

Single Vector Quantization (SVQ) : 

● Use a single codebook for quantization
● is simpler and particularly useful for training acoustic language models. 
● To compensate for the potential loss of information → adopt larger codebook sizes.

26



Quantization Algorithm

Group Vector Quantization (GVQ).

● Increases capacity at the first quantization stage by dividing the latent feature.

●  Quantized independently using a separate RVQ module.
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Quantization Algorithm

Finite Scalar Quantization (FSQ).

● FSQ maps each dimension of a feature vector to a fixed set of scalar values.
● No embedding saved for codebooks.
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Adopted from Finite Scalar Quantization: VQ-VAE Made Simple



Quantization Algorithm

Multi-Scale RVQ (MSRVQ).

● Extends standard RVQ by applying quantizers at different temporal resolutions.
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Adopted from SNAC: Multi-Scale Neural Audio Codec



Quantization Algorithm

Cross-Scale RVQ (CSRVQ).

● Encode residuals between encoder and decoder features at multiple 
hierarchical levels.
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Adopted from ESC: Efficient Speech Coding with Cross-Scale Residual Vector Quantized Transformers



Quantization Algorithm

Product Quantization (PQ).

● Commonly used in self-supervised learning (SSL)
● Partition embeddings into smaller subvectors and using Random-Projection 

Quantization.
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 Best-RQ and USM



Fixed vs. Adaptive Bitrate

● Fixed bitrate, such as those based on codebooks, the bitrate is determined by the 
number of bits required to represent each code index, irrespective of the actual token 
distribution.
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codes based on the statistical frequency of tokens. 
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● Adaptive bitrate refers to entropy-based coding schemes that assign variable-length 
codes based on the statistical frequency of tokens. 

●  It is also important to distinguish between adaptive bitrate and scalable bitrate.



Encoder-Decoder
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Architecture

● Convolutional (CNN)
● Convolutional + RNN (CNN+RNN).
● Transformer (T).
● Convolutional + Transformer (CNN+T).
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Input and Output Representations

● Encoders can process audio inputs in either the time or the frequency domain.
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● The output representation can follow two Approaches:

1. Time domain waveforms, where the decoder directly upsamples the discrete 
representation into waveforms.



Input and Output Representations

● Encoders can process audio inputs in either the time or the frequency domain.
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● The output representation can follow two Approaches:

1. Time domain waveforms, where the decoder directly upsamples the discrete 
representation into waveforms.

2. Time-frequency domain features, where the decoder outputs time-frequency domain 
features and the Inverse Short-Time Fourier Transform (ISTFT) is applied for 
upsampling.



Training Paradigm
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Training Strategies

● Separate (Post-Training). The encoder and decoder are optimized independently 
from the quantization module.
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Training Strategies

● Separate (Post-Training). The encoder and decoder are optimized independently 
from the quantization module.
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● Joint (End-to-End Training). The encoder, quantizer, and decoder are optimized 
simultaneously within a unified end-to-end framework.



Main Training Objectives:

● Reconstruction (Recon).
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Main Training Objectives:

● Reconstruction (Recon).
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● Vector Quantization (VQ). 

● Adversarial (GAN)

● Feature Matching (Feat).

● Diffusion (Diff).

● Masked Prediction (MP).



Auxiliary Components
Disentanglement. 

● Separate different speech attributes into distinct representations.
● Reduce redundancy while allowing independent control over acoustic properties and 

simplifying downstream tasks.
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The model architecture of SoCodec



Auxiliary Components
Semantic Distillation. 

● Enhance codec representations by incorporating phonetic information into specific 
codebooks.
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The model architecture of SoCodec



Training Paradigm

Supervised Semantic Tokenization

● Some tokenizers explicitly capture phonetic detail through supervised training.
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S3 Tokenizer - CosyVoice PAST: Phonetic-Acoustic Speech Tokenizer



Streamability and Domain Categorization
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Streamability and Domain Categorization

● Streamability refers to the ability of a tokenizer to process and generate audio in 
real-time with minimal latency, using little or no future context.
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Streamability and Domain Categorization

● Streamability refers to the ability of a tokenizer to process and generate audio in 
real-time with minimal latency, using little or no future context.
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● Target Domain. The type of data the tokenizer is specifically trained on  e.g., speech, 
music, general audio or multiple domains.



We are done with our Taxonomy Section !

We provide the database of around 70 tokenizers in our website:

Check out our tokenizer database!

  Contribute your tokenizer ➜ Fill out the form at the bottom of the page.
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https://poonehmousavi.github.io/dates-website/taxonomy


Study 2:
 Benchmark Evaluation
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Audio tokenizers used throughout the study.
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Reconstruction Evaluation
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Reconstruction Evaluation
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Reconstruction Evaluation
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Codec Superb Versa

https://codecsuperb.github.io/
https://github.com/wavlab-speech/versa/tree/main/egs/survey


Evaluation Metrics on Resynthesized Audio
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Reconstruction Performance of speech.

64



Reconstruction Performance for both General Audio and Music
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Main Takeaways

● Overall, these results underscore the importance of evaluating audio tokenizers 
beyond traditional waveform fidelity measures. 
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● Models optimized for perceptual or downstream tasks may exhibit low signal 
reconstruction performance, yet still produce subjectively high-quality audio 
reconstructions.



Downstream Evaluation
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Downstream Evaluation
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Downstream Evaluation
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DASB

https://poonehmousavi.github.io/DASB-website/


Datasets, metrics, and downstream models for the DASB 
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DASB Results for Discriminative Tasks (speech)
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DASB Results for Generative Tasks (speech).
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DASB Results  Music and General Audio Tasks.
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Main Takeaways
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Acoustic Language Models Evaluation
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Acoustic Language Models Evaluation

77

Zero 
Resource SALMon

https://github.com/zerospeech/zerospeech2021_baseline
https://github.com/zerospeech/zerospeech2021_baseline
https://github.com/wavlab-speech/versa/tree/main/egs/survey


Speech Language Modeling
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Main Takeaways
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● Semantic and acoustic performance in SLMs varies significantly across tokenizer types.

●  Semantically distilled tokenizers, particularly those with semantic stream 
overweighting, showed promising results close to HuBERT.

●  Overall, our findings suggest that, for now, there is no single tokenizer that excels 
across all spoken and acoustic tasks.



Text-to-Speech (VALL-E).
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Main Takeaways

83

● Overall, achieving strong TTS performance with discrete tokenizers remains 
challenging, especially under constrained training conditions



Main Takeaways

84

● Overall, achieving strong TTS performance with discrete tokenizers remains 
challenging, especially under constrained training conditions

●  Training with semantic tokenizers leads to more robust and effective TTS performance 
compared to acoustic or semantically distilled tokenizers.



Main Takeaways

85

● Overall, achieving strong TTS performance with discrete tokenizers remains 
challenging, especially under constrained training conditions

●  Training with semantic tokenizers leads to more robust and effective TTS performance 
compared to acoustic or semantically distilled tokenizers.

● When scaling data and model, acoustic tokenizers, such as EnCodec, can be 
competitive with or even outperform semantic ones.



Audio Generation
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Main Takeaways
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Main Takeaways
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● Our findings highlight the critical role of domain-specific training for audio tokenizers.

● Our results also show that the best reconstruction performance does not correlate with 
the best modeling performance.

● We also emphasize the need for more robust evaluation metrics.



Music Generation 
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Main Takeaways
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● Same as audio, domain-specific training is crucial for music tokenizers.



Main Takeaways
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● Same as audio, domain-specific training is crucial for music tokenizers.

●  Tokenizers with higher sample rates and multi-codebook, associated with higher 
bitrates, tend to perform better.



General Trend
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General Trend
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No tokenizer consistently outperforms others on all axes.
 The performance is strongly task- and domain-dependent.



Study 3: 
Ablation Studies 
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ESPnet-C
odec

https://github.com/espnet/espnet
https://github.com/espnet/espnet


Summary of Models Used in the Ablation Study Across 16kHz 
and 44.1kHz Setups.
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Ablation Experiments on Reconstruction Performance (speech).
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Ablation Experiments on Reconstruction performance (audio 
and music).

98



Main Takeaways
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● Data Domains. Our experiments confirm that reconstruction quality consistently peaks 
when models are evaluated on domains matching their training data.
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● Data Domains. Our experiments confirm that reconstruction quality consistently peaks 
when models are evaluated on domains matching their training data.

● Sampling Rate. we recommend that future research on discrete audio representation 
should consider sampling rate as a critical design parameter, with careful optimization 
based on the selected quantization approach and target application domain. 



Main Takeaways
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● Distillation Effect. Distillation from pretrained speech representations can enhance 
model performance on certain metrics for signal reconstruction. But, s a potential 
trade-off between achieving high performance in specialized tasks and maintaining 
broader generalization capabilities.
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● Distillation Effect. Distillation from pretrained speech representations can enhance 
model performance on certain metrics for signal reconstruction. But, s a potential 
trade-off between achieving high performance in specialized tasks and maintaining 
broader generalization capabilities.

● Quantization Methods. Our experiments demonstrate that different quantization 
methods significantly impact codec performance.  The RVQ modeling consistently 
outperforms other quantization approaches across most reconstruction metrics.



Listen to Some Examples
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https://poonehmousavi.github.io/dates-website/samples
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Conclusion and Future Directions 
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Scaling Limitations and Generalizability
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Benchmark vs. Reported Performance Gap

  Semantic Distillation Beyond Speech

Discrete vs. Continuous Representations

Toward Unified Tokenizers

Trustworthiness

Fair and Consistent Evaluation

Scaling Limitations and Generalizability

Correlation between Reconstruction and Downstream 
Performance
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