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AI'S ENERGY FOOTPRINT

Light bulbs have energy ratings — so why can’t Al chatbots?

The power consumed by artificial intelligence (Al) tools varies greatly depending on the task. An Al model that
provides answers to queries is much less energy-intensive than one that generates images from text prompts,
for example. And the data show that even Al models of the same type can vary widely in energy consumption.

® = Al model* | = Mean

Type of task

Image generation -

Image captioning -

Automatic speech recognition -
Question answering -

Text classification
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Tests conducted on 20 popular open-source models. Each dot represents one model; 11 Watt-hour represents power consumption of 1 W extended over 1 hour.


https://www.nature.com/articles/d41586-024-02680-3

Elon Musk &
%Y @elonmusk
230k GPUs, including 30k GB200s, are operational for training Grok

@xAl in a single supercluster called Colossus 1 (inference is done by our
cloud providers).

At Colossus 2, the first batch of 550k GB200s & GB300s, also for
training, start going online in a few weeks.

®™ SamAltman & ¢
@sama

we have signed a deal for an additional 4.5 gigawatts of capacity with
oracle as part of stargate. easy to throw around numbers, but this is a
_gigantic_infrastructure project.

some progress photos from abilene:
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Test-time scaling

Can we go higher with the same
model?



“Reasoning”
“Regular” LLMs
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A Visual Guide to Reasoning LLMs - by
Maarten Grootendorst

Question

I have 10 apples. | gave 2 apples
away. | ate 1. How many do | have?

“Reasoning”
Large Language Model

v

[You have 10 apples ]
[You gave 2 away and have 8 left ] reason steps
. ] (typically Chain-of-Thought)

[You ate 1and have 7 left

ACUNEVEWAE T <— final answer

Cost depends (more or less linearly) on
how many reasoning tokens are needed.
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A Visual Guide to Reasoning LLMs - by

Scaling laws for inference Maarien Grootendors
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These lines indicate that test-time compute
might scale further than train-time compute.
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L d d | [2311.12424] Looped Transformers are Better at
OO pe I I I O e S Learning Learning Algorithms
Iso-param Baseline Looped Model Iso-FLOP Baseline Middle Looping
(k® 1) (k®L) (kL ® 1)

|
: L loops
. >kL layers

Figure 1: Illustration of the simple and architecture agnostic looping mechanism that we consider.
A k-layer block looped L times (middle) is denoted by (k ® L), which can essentially be viewed
as a weighted shared model. The iso-param baseline, (k ® 1), is a k-layer model with the same
number of distinct parameters. The iso-FLOP baseline, (kL ® 1), is a kL-layer model with the
same depth but L times more parameters. Middle looping is a strategy that is inspired from prior
works on model stacking (e.g. (Saunshi et al., 2024)).
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T n 1 [2510.04871] Less is More: Recursive Reasoning
Tiny" recursive models with Tiny Networie
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Input (x)
[Question]

Prediction (y)
[Answer]

Latent (z)
[Reasoning]

Step 1, 2,...,n: Update zgiven x, y, z
(Improve the latent z)

v

‘ Step n+1: Update y given y, z ’

(Improve the prediction y)

Applied Ny, = 16 times
(trying to improve the prediction y)

Figure 1. Tiny Recursion Model (TRM) recursively improves
its predicted answer y with a tiny network. It starts with the
embedded input question x and initial embedded answer
y, and latent z. For up to Nsup = 16 improvements steps,
it tries to improve its answer y. It does so by i) recursively
updating 1 times its latent z given the question x, current
answer y, and current latent z (recursive reasoning), and
then ii) updating its answer y given the current answer y
and current latent z. This recursive process allows the model
to progressively improve its answer (potentially address-
ing any errors from its previous answer) in an extremely
parameter-efficient manner while minimizing overfitting.

def latent_recursion(x, y, z, n=6):
for i in range(n): # latent reasoning
z = net(x, y, z)
y = net(y, z) # refine output answer
return y, z

def deep._recursion(x, y, z, n=6, T=3):
# recursing T—1 times to improve y and z (no gradients needed)
with torch.no_grad():
for j in range(T-1):
y, z = latent _recursion(x, y, z, n)
# recursing once to improve y and z
y, z = latent_recursion(x, y, z, n)
return (y.detach(), z.detach()), output_head(y), Q-head(y)

# Deep Supervision
for x.input, y-true in train.dataloader:
y, z = y-init, z_init
for step in range(N_supervision):
x = input_embedding(x_input)
(y, z), y-hat, g-hat = deep.recursion(x, y, z)
loss = softmax.cross_entropy(y-hat, y-true)
loss += binary_cross_entropy(q-hat, (yhat == y_true))
loss.backward()
opt.step()
opt.zero_grad()
if gq-hat > 0: # early—stopping
break

Figure 3. Pseudocode of Tiny Recursion Models (TRMs).
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Test-time “downscaling”

A single model that dynamically reduces its
computational footprint depending on, e.g., user
requests, the environment, or input complexity.

“Do not use more than 3% battery.”

)
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Dynamic neural networks

Motivating examples



Not all layers are needed (Schuster et al., 2022)

Known as early exiting
In the literature: end the
computation at an
earlier layer for “simple”
Inputs or tokens.




(Schuster et al., 2022)

An example: Confident Adaptive LM

Guaranteed §, € textual or risk
——> consistency of the full sequence
_wiEarly Exit? )
’ Example of “state propagation”
.' (Dashed arrows show the hidden- Yeun OF Ziest
User-defined 8, e global states of previous steps used to "
tolerance constraints guide put \
the local exiting decisions y L
__________ | Layer4 | !
= | o o . 7 4
|- mini—- / | Layer3 | | [ Layer3 | 4
Grant—"|  Elliott” Six 2 2 =
| Layer2 | || Layer?2 | / | Layer2 | | [_Layer2 ] <+« —» Yearly
y ¢ 3 ) . ) )
Llaver1 | | Llaver1 J ([ Layer1 ] || Layer1 ] | Llayer1 J | [ Layer1 | | [ Layer1 |
5 AN R IS ) IS R SN S S S RN




[2407.09298] Transformer Layers as Painters

(a) Skip (b) Middle Repeat (c) Reverse (d) Parallel (e) Looped Parallel

Random Layer Order: BERT-Large
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. . [2303.09752] ColLT5: Faster
The entire layer is not needed L ong-Range Transformers with

Conditional Computation
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Mixture-of-depths

T

[2404.02258] Mixture-of-Depths: Dynamically
allocating compute in transformer-based lanquage
models
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Figure 1 | Mixture-of-Depths Transformer. As in mixture-of-experts (MoE) transformers we use a
router to choose among potential computational paths. But unlike in MoE transformers the possible

choices are a standard block’s computation (i.e., self-attention and MLP) or a residual connection.

Since some tokens take this second route, Mixture-of-Depths (MoD) transformers have a smaller
total FLOP footprint compared to vanilla or MoE transformers. On the top right is depicted a trained
model’s routing decisions for a short sequence truncated to 64 tokens for visualization purposes. When
examining the choices one can find tokens processed by later blocks’ layers, despite passing through
relatively few total blocks throughout the model’s depth. This is a unique feature of MoD compared
to conventional halting-based, or "early-exit" conditional computation, which instead engage blocks
serially, or vanilla transformers, which engage every block.

Figure 4 | isoFLOP analysis. We used the 12.5% capacity MoD variant to perform an isoFLOP analysis
for 6e18, 2e19, and 1e20 FLOPs, training models varying in size from 60M to 3B parameters. Depicted
on the right are the relative FLOPs per forward pass (normalized to the isoFLOP optimal baseline).
There exist MoD variants that are both faster to step (by virtue of requiring fewer FLOPs per forward
pass) and better performing than the isoFLOP optimal baseline.
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MatFormer

[2310.07707] MatFormer: Nested

Transformer for Elastic Inference
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[2112.07658] AdaViT: Adaptive Tokens for Efficient

NOt a” tOkenS are needed Vision Transformer
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ImageNet1K Examples for Adaptive Tokens

Figure 1. We introduce A-ViT, a method to enable adaptive token computation for vision transformers. We augment the vision transformer
block with adaptive halting module that computes a halting probability per token. The module reuses the parameters of existing blocks
and it borrows a single neuron from the last dense layer in each block to compute the halting probability, imposing no extra parameters or
computations. A token is discarded once reaching the halting condition. Via adaptively halting tokens, we perform dense compute only on
the active tokens deemed informative for the task. As a result, successive blocks in vision transformers gradually receive less tokens, leading
to faster inference. Learnt token halting vary across images, yet align surprisingly well with image semantics (see examples above and more
in Fig. 3). This results in immediate, out-of-the-box inference speedup on off-the-shelf computational platform.
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Dynamic neural networks

A categorization
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Dynamic choice
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— [2301.07473] Discrete Latent Structure in
Formalizing the problem Neural Networks
r 3
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k choices Scores Gradient almost

always zero!

Note: for k=2, we can take binary decisions (e.g., keep or discard a patch).
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[1611.01144] Categorical Reparameterization with

Softmax approximation Gumbel.Softmax
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° ° H [2301.07473] Discrete Latent Structure in
Gradient estimation Neural Networks
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Improving exploration

Need the gradient of the
sampling operation!

(1.3 |E / 1

— Neural network % § — 02 —> Sampling — 7 — O —>

0.7 0
p(z) o< exp(s)

Downstream
model

If one score is much higher than the others, sampling or maximizing has similar
behaviour, but if the scores are mixed, this can promote exploration.




Reparameterization (Gumbel-max)

u ~ Gumbel(0, 1)

1.3 1
—» | Neural network % § — 02 —> —> argmax N — O — Dovr\]/nnjéreeiam
0.7 0

It can be shown that the sample z is sampled according to the correct distribution.




Gumbel-softmax (full diagram)

u ~ Gumbel(0, 1)

(1.3
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Luckily, this is all already implemented in PyTorch. :-)
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Gumbel-softmax (the equations)

= arg max (s+u) 'z ~ softmax((s+u)/7)

< .

This is an example of perturbed optimization or perturb-and-MAP, which is a
very general principle!

Shortest Path Perturbed Path £ = 0.5 Perturbed Path £ =2.0

RN

Figure 5: In the shortest path experiment, training features are images. Shortest paths are computed
based on terrain costs, hidden to the network. Training responses are shortest paths based on this
cost.

[2002.08676] Learning with Differentiable Perturbed Optimizers
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[2301.07473] Discrete Latent Structure in

Beyond Gumbel'SOftmaX Neural Networks

e Other regularized operators (e.g., entmax).
e Different types of approximations (e.g., score function

estimators).

e Algorithms for differentiable sampling beyond categorical

variables (e.g., subgraphs).

.. This is just an introduction!
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Dynamic neural networks

Making models truly dynamic



Overview

e Fine-tuning existing models is preferable (to leverage the
ecosystem).

e Computational cost should be an external constraint if
possible (computation-accuracy trade-off).

e Hardware latency is important (e.g., customized kernels).

e Lastly, can we also make training cost-efficient?




Adaptive Computation Modules: Granular

Ad a ptlve CO m p Utatl O n m Od U I eS Conditional Computation for Efficient
Inference | AAAI
(AAAI, 2025)

Fine-tune a pre-trained models to transform some components into adaptive blocks:
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Adaptive computation modules

(AAAI, 2025)

Adaptive Computation Modules: Granular
Conditional Computation for Efficient
Inference | AAAI
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Figure 3: Performance-efficiency trade-offs of different con-
ditional computation methods as measured on the ImageNet-
1k dataset. ACM-based ViT-B achieves the Pareto frontier

for a wide range of computational budgets.

Figure 4: Performance-efficiency trade-offs of different
conditional computation methods as measured on the
CommonVoice-es dataset. The model’s performance is re-
ported in terms of Word Error Rate (WER). ACMs achieve
lower WER for every evaluated computational budget.
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Adaptive Computation Modules: Granular

Ad a ptlve CO m p Utatl O n m Od U I eS Conditional Computation for Efficient

Inference | AAAI
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Figure 7: For each input audio token (red waveforms), we
show the average number of learners that were activated in
Figure 6: Computational load heatmaps for the model the ACMI_Zed model for Sipger = 0.25 (blfle bars). We_ can
trained with Bueee = 0.6. The model allocates its compu- see that this model also learned to allocate its computational
tational budget to semantically meaningful patches. budget to important regions of the input.
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[2505.17604] Adaptive Semantic Token Communication for
Transformer-based Edge Inference
\
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[2509.15058] Communication Efficient Split
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