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Musical Versions

Different renditions of the same musical piece 
or passage
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Musical Versions

Further examples: https://secondhandsongs.com/ or https://furkanyesiler.github.io/musical_version_id_spm/

Different renditions of the same musical piece 
or passage
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From Yesiler et al. (2021), “Audio-based musical version identification: elements and challenges”, IEEE Signal Processing Magazine 38(6): 115-136.
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Applications

• Digital rights/copyright management

• Content monitoring

• Copyright infringement

• Catalog organization

• Duplicate/near-duplicate assessment

• Link related items

• Discovery/creative tool

• Music recommendation

• Creative inspiration

• Preserve/relate cultural heritage
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Musical Version Matching

Compute embedding               Store in database               Nearest neighbor retrieval
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Contrastive Learning from
Weakly-labeled Segments (CLEWS) 

Two main contributions:

• Segment-based learning and matching
• Pairwise segment distance reductions: bpwr-k

• Different reductions for positive and negative pairs

• Better contrastive loss
• Evolved from alignment and uniformity (Wang & Isola, 2020) 

• Three new major considerations

• Decoupling: No overlap between positive and negative pairs

• Hyper-parameters: Remove/add + Comparable gradient contribution for positive and negative pairs + Soft threshold 
for “easy” negative pairs

• Geometric: Space geometry and geodesic distance should match

Wang & Isola (2020), “Understanding contrastive representation learning through alignment and uniformity on the hypersphere”, Proc. of Int. Conf. on Machine 
Learning (ICML) 119: 9929-9939.
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CLEWS: Reductions

Segment-based learning and 
matching:
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CLEWS: Reductions

Segment-based learning and 
matching:

• Reduction types: Rmean, Rtop-k, 
Rmeanmin, Rmin

• New reduction type: Rbpwr-k

• Different reductions for 
positive and negative pairs:
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CLEWS: Loss

Contrastive loss. Starting from A&U.
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CLEWS: Loss

Contrastive loss. Starting from A&U.

• Decoupled: No overlap between positive and negative pairs.

• Change hyper-parameters: Fix/remove/add.

• “Comparable” gradients for positive & negative pairs.
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CLEWS: Loss

Contrastive loss. Starting from A&U.

• Decoupled: No overlap between positive and negative pairs.

• Change hyper-parameters: Fix/remove/add.

• “Comparable” gradients for positive & negative pairs.

• Euclidean geometry and distance. Space geometry and geodesic distance should 
match.
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Results: Track-level
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Results: Segment-level
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(𝜏 = Segment length)



Results: Reduction and Loss Ablations
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Results: Hyper-parameters
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Conclusion
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• A state-of-the-art approach for musical version matching at the track level.

• Also breakthrough performance on musical version matching at the 
segment level.

• Based on two novel contributions:

• Weak labeling → Segment reductions.

• A&U loss → CLEWS loss (decoupling, hyperparameters, geometric 
considerations)

• Generality of the proposed concepts may make CLEWS applicable to further 
problems beyond music matching.
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