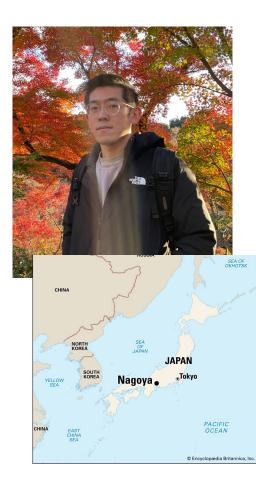
Automatic Quality Assessment for Speech and Beyond

Wen-Chin Huang Nagoya University, Japan

Mila Conversational AI reading group 2025.5.15

Who am I?



- Assistant professor @ <u>Toda lab</u>, Nagoya Univ., Japan
 - National Taiwan Univ. (B.E.)
 ⇒ Nagoya Univ., Japan (M.S. & Ph.D.)
- Research interest
 - ~ Ph.D.: voice conversion
 - Now: **speech quality assessment**, voice anonymization
- Specialty: organizing challenges & building toolkits
 - Voice conversion challenge: 2020, 2023, 2025
 - VoiceMOS Challenge: 2022, 2023, 2024, 2025
 - <u>seq2seq-vc</u>, <u>s3prl-vc</u>, <u>sheet</u>, <u>jatts</u>
- <u>HP</u>, <u>Google Scholar</u>, <u>Github</u>

What is speech quality assessment (SQA)?

- **Assess = evaluate** → speech quality <u>evaluation</u>
- What is quality? \rightarrow an umbrella term!
 - Noisy/clean? Robotic? Native?
 - Take SQA for synthetic speech as an example:
 - 1980s to early 1990s: intelligibility, comprehension Mid-1990s and 2000s: naturalness, intelligibility 2010s to the present: similarity, hard cases, etc.
 - Nowadays: we ask for more than quality! Similarity, diversity, ... etc.
- Properties of SQA:
 - *Subjective*: cognitive difference among different people
 - *Relative*: results differ when the reference sample(s) change

Why did I shift from "synthesis" to "evaluation"?

- The era of "speech synthesis as fundamental research" is over
 - People are seeking for more than naturalness
 - In voice conversion: emotion conversion, accent conversion...
 - Evaluating these dimensions is hard!
- Evaluation is what makes science different from product development
 - (Technically speaking) the goal of product is to satisfy the market & the customers
 - In science we care about "progress" = "fair evaluation"
- The ability to "evaluate" is the ability to "appreciate"
 - Ex., making AI understand movies, music, art...
 - Related to sociology, psychology, ...

Outline of today's talk

- 1. Speech quality assessment in the era of DNNs
- 2. Experiences and lessons from the VoiceMOS Challenge Series
- 3. Ongoing work and unexplored problems

Speech quality assessment in the era of DNNs

You might have seen these metrics in papers...

P. 563	PESQ		Р	POLQA		
ΠΝΟΜΟΟ		NAT	SSNR		WER	
DNSMOS	STOI		SI-SDR	MCD		
ViSQOL	MOS	MUSHRA		ABX	SIM	
	L	et's try to c	lassify them!			7

Ways to categorize SQA: SQA for synthetic/non-synthetic speech

- Synthetic speech: text-to-speech (TTS), voice conversion, ...
- Non-synthetic speech: speech that went through **distortion**
 - Think about *telephony*: noise, reverberation, speech coding, clipping, packet loss, etc.
 - Has a longer history
- Observation: in the literature, SQA for synthetic/non-synthetic speech seems to be different research fields. Why?
 - IMO, SQA for non-synthetic speech is "easier" because it has a **ground truth**
 - Synthetic speech: no ground truth because of the "one-to-many" nature
 - Consider TTS: <text, speaker> \rightarrow speech; there are infinite realizations for a given input
 - Natural fluctuation in human speech production

Different SQA methods are needed to tackle the difference in nature between synthetic and non-synthetic speech

(My opinion)

8

(My definition)

Exclude speech enhancement, source separation...

Ways to categorize SQA: subjective/objective

- Subjective measure: in the form of listening tests (i.e., human studies)
 - Subjective is the most "accurate" SQA method
 - The end-user of most speech "generation" tasks is **human**
 - (Exceptions: speech enhancement as front end for ASR)
- Objective measure: any "machine-based" method other than listening tests
 - Subjective tests: too costly in terms of time and money

Main focus of this talk!

IMO: for any objective measure to be valid, its correlation with subjective opinions should be first verified

Subjective test types

- Most common type nowadays: mean opinion score (MOS)
 - Takes the <u>mean</u> of <u>opinion score</u>s from multiple listeners, usually range from 1-5.
 - Falls into the category of absolute category rating (ACR)
 - Critiques: relative to surrounding samples, equal-ranging bias
 - (Sub-optimal) Solutions: provide references (DMOS; MUSHRA: low-pass filtered)
- What the community tries to promote: **pairwise preference (AB) test**
 - Comparing is less noisy than direct scoring
 - The human auditory system can make comparisons rather than absolute judgments
 - Disadvantage: hard to scale up

Shah, N. B., Balakrishnan, S., Bradley, J., Parekh, A., Ramchandran, K., & Wainwright, M. (2014). When is it better to compare than to score?. arXiv preprint arXiv:1406.6618.

M. Goldstein, "Classification of methods used for assessment of text-to-speech systems according to the demands placed on the listener," Speech Communication, vol. 16, no. 3, pp. 225–244, 1995. 10

Ways to categorize SQA: intrusive/non-intrusive

- Intrusive = reference-based = double-ended Non-intrusive = reference-free = single-ended
- SQA for **non-synthetic speech** usually adopts **intrusive** methods
 - Because there is a clear ground-truth (as mentioned before)
 - Examples: short-time objective intelligibility (**STOI**), Perceptual Evaluation of Speech Quality (**PESQ**), scale invariant signal-to-distortion ratio (**SI-SDR**)
- It is harder to adopt intrusive methods in SQA for synthetic speech
 - However, intrusive methods are sometime used: Mel cesptrum distortion (MCD), speaker similarity tests, ABX preference tests
- Developing non-intrusive methods has been a trend in the past decade.

Ways to categorize SQA: signal-/model-based

(My definition)

- Model-based: learns from data to make the prediction
 - Advantage: correlates better with human judgements
 - Disadvantage: generalization issues

⇒ Gaining attention since late 2010s thanks to DNNs!

- Signal-based: does not require learning such a model
 - Calculates some pre-defined **distance** between input and reference
 - Advantage: suffers less from generalization
 - Disadvantage: mostly intrusive

Let's categorize some non DNN-based objective SQA metrics...

Metric	Evaluation target?	Intrusive? Non-intrusive	Signal-/model-based	What does it measure?
PESQ	Non-synthetic speech	Intrusive	Model-based!	Perceptual quality
STOI	Non-synthetic speech	Intrusive	Signal-based	intelligibility
SSNR	Non-synthetic speech (for speech enhancement)	Intrusive	Signal-based	Signal distortion
SI-SDR	Non-synthetic speech (for source separation)	Intrusive	Signal-based	Signal distortion
POLQA	Non-synthetic speech (for telephony)	Intrusive	Signal-based	Perceptual quality
ViSQOL	Non-synthetic speech (for VoIP, codecs)	Intrusive	Signal-based	Perceptual quality
P.563	Synthetic speech	Non-intrusive	Signal-based	Perceptual quality
MCD	Synthetic speech	Intrusive	Signal-based	Spectral distortion

DNN-based SQA: basic idea & learning target

• Early attempts: intrusive methods; non-intrusive has soon become mainstream

- Way to categorize DNN-based SQA: learning target
 - 1. Some other objective metric: PESQ, STOI, ... etc.
 - Motivation: use a non-intrusive network to mimic intrusive metrics
 - Advantage: data is infinite (can be artificially generated)
 - 2. Human judgement scores ⇒ **subjective speech quality assessment (SSQA)**
 - Collected through listening tests
 - Problem: such dataset is always scarce...

I am personally more interested in this direction

Subjective SQA datasets (all with MOS labels)

Name	Speech type	Language	FS (kHz)	# samples (train/dev)
BVCC	TTS, VC, natural speech	English	16	4944/1066
SOMOS	TTS, natural speech	English	24	14100/3000
SingMOS	SVS, SVC, natural singing voice	Mandarin, Japanese	16	2000/544
NISQA	artificial distorted speech, real distorted speech, clean speech	English	48	11020/2700
TMHINT-QI	artificial noisy speech, enhanced speech , clean speech	Mandarin	16	11644/1293
Tencent	artificial distorted speech, clean speech	Mandarin	16	10408/1155
PSTN	PSTN speech, artificial distorted speech	English	8	52839/5870

W.-C. Huang, E. Cooper, and T. Toda, "MOS-Bench: Benchmarking generalization abilities of subjective speech quality assessment models," arXiv preprint arXiv:2411.03715, 2024

Evaluation of (DNN-based) SQA methods

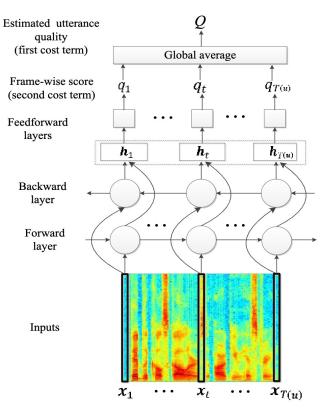
- Four commonly used metrics to evaluate SQA
 - MSE (mean squared error): Sensitive to large errors; penalizes outliers
 - LCC (linear correlation coefficient): measures linear correlation
 - SRCC (Spearman rank correlation coefficient): focuses on ordinal ranking
 - KTAU (Kendall's Tau correlation coefficient): more robust than SRCC for small datasets
- There are two main usage of SQA methods
 - Compare a lot of systems (ex., evaluation in scientific challenges)
 - **Ranking-related** metrics are preferred (LCC, SRCC, KTAU)
 - Evaluate absolute goodness of a system (ex., objective function in training)
 - Numerical metrics are preferred (MSE)

SQA for non-synthetic speech: Quality-Net

- Non-intrusive
- Learning target: PESQ
- Evaluation target: noise suppressors
- Model architecture: BLSTM
- Training data: noisy speech

• Contributions: pioneer work on DNN-based SQA

Table 3: Results of Quality-Net and the two-stage model.									
MSE LCC SRCC									
Autoencoder +NN [22]	0.1529	0.8434	0.8675						
Quality-Net	0.1266	0.8749	0.8807						



S.-W. Fu, Y. Tsao, H.-T. Hwang, and H.-M. Wang, "Quality-Net: An end-to-end non-intrusive speech quality assessment model based on BLSTM," in Proc. Interspeech, 2018. Google scholar citations: 209

SQA for non-synthetic speech: DNSMOS (Deep Noise Suppression MOS?)

- Non-intrusive
- Learning target: human judgement
- Evaluation target: noise suppressors
- Model architecture: CNN
- Training data: noise-suppressed speech
- Contributions: trained on crowdsourced human preference data; easy-to-use API

Layer	Output dimension
Input	900 x 120 x 1
Conv: 32, (3 x 3), 'ReLU'	900 x 120 x 32
MaxPool: (2 x 2), Dropout(0.3)	450 x 60 x 32
Conv: 32, (3 x 3), 'ReLU'	450 x 60 x 32
MaxPool: (2 x 2), Dropout(0.3)	225 x 30 x 32
Conv: 32, (3 x 3), 'ReLU'	225 x 30 x 32
MaxPool: (2 x 2), Dropout(0.3)	112 x 15 x 32
Conv: 64, (3 x 3), 'ReLU'	112 x 15 x 64
GlobalMaxPool	1 x 64
Dense: 64, 'ReLU'	1 x 64
Dense: 64, 'ReLU'	1 x 64
Dense: 1	1 x 1

Table 2: Correlation of DNSMOS with other widely used objective metrics

	PESQ	SDR	POLQA	DNSMOS (M_0)
PCC	0.78	0.23	0.79	0.93
SRCC	0.82	0.25	0.84	0.94

Chandan K. A. Reddy, Vishak Gopal, and Ross Cutler, "DNSMOS: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors," in Proc. ICASSP, 2021 Google scholar citations: 344 18

(Non-Intrusive SQA for non-synthetic speech: NISQA Speech Quality Assessment)

- Non-intrusive
- Learning target: human judgement
- Evaluation target: noise suppressors
- Model architecture: CNN
- Training data: 59 distorted speech datasets
- Contributions: released a large-scale human preference data; released pre-trained model weights and code

Dataset	Scale	Lang	Con	Files	NI	SQA
					r	RMSE
103_ERICSSON	SWB	se	54	648	0.85	0.38
104_ERICSSON	NB	se	55	660	0.77	0.47
203_FT_DT	SWB	fr	54	216	0.92	0.36
303_OPTICOM	SWB	en	54	216	0.92	0.33
403_PSYTECHNICS	SWB	en	48	1152	0.91	0.36
404_PSYTECHNICS	NB	en	48	1151	0.77	0.39
503_SWISSQUAL	SWB	de	54	216	0.92	0.34
504_SWISSQUAL	NB	de	49	196	0.92	0.37
603_TNO	SWB	nl	48	192	0.89	0.44
ERIC_FIELD_GSM_US	NB	en	372	372	0.79	0.36
HUAWEI_2	NB	zh	24	576	0.98	0.21
ITU_SUPPL23_EXP1o	NB	en	44	176	0.92	0.31
ITU_SUPPL23_EXP3d	NB	ja	50	200	0.92	0.27
ITU_SUPPL23_EXP3o	NB	en	50	200	0.91	0.30
TUB_AUS	FB	en	50	600	0.91	0.21
TUB_LIKE	SWB	de	8	96	0.98	0.25
NISQA_VAL_LIVE	FB	en	200	200	0.82	0.40
NISQA_VAL_SIM	FB	en	2500	2500	0.90	0.48
NISQA_TEST_P501	FB	en	60	240	0.95	0.31
NISQA_TEST_NSC	FB	de	60	240	0.97	0.23
NISQA_TEST_FOR	FB	en	60	240	0.95	0.26
NISQA_TEST_LIVETALK	FB	de	58	232	0.90	0.35

Good performance across many telephony datasets

G. Mittag, B. Naderi, A. Chehadi, and S. M'oller, "NISQA: A deep CNN-self-attention model for multidimensional speech quality prediction with crowdsourced datasets," in Interspeech, 2021, Google scholar citations: 286

SQA for non-synthetic speech: TorchAudio-Squim

(TorchAudio-Speech QUality and Intelligibility Measures)

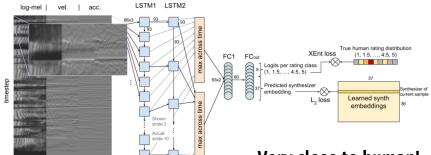
- Non-intrusive & intrusive with human judgement & STOI, PESQ, SI-SDR
- Evaluation target: noise suppressors
- Model architecture: DPRNN & Transformers
- Training data: DNS Challenge 2020
- Contributions: relatively new (2023); tight integration with TorchAudio

Approach	STOI (%)			WB-PESQ			SI-SDR (dB)			# Params	# MAC/5s
Approach	$MAE \downarrow$	PCC \uparrow	SRCC ↑	$MAE \downarrow$	PCC \uparrow	SRCC ↑	$MAE\downarrow$	PCC \uparrow	SRCC ↑		# WAC/35
Quality-Net [28]	-	-		0.396	0.845	0.849	-	-	-	0.30 M	297.30 K
MOSA-Net [17]	5.254	0.900	0.864	0.335	0.904	0.914	1.990	0.965	0.958	317.19 M	94.86 G
AMSA [13]	3.498	0.913	0.826	0.207	0.932	0.938	1.562	0.968	0.964	2.96 M	687.61 M
MetricNet [16]	-	-	-	0.182	0.938	0.947	-	-	-	6.61 M	2.08 G
Ours without MTL	2.324	0.939	0.935	0.168	0.942	0.951	1.158	0.977	0.973	7.39 M	40.27 G
Ours with MTL	1.994	0.950	0.950	0.142	0.958	0.963	0.838	0.985	0.985	7.39 M	40.27 G

A. Kumar, K. Tan, Z. Ni, P. Manocha, X. Zhang, E. Henderson, and B. Xu, "Torchaudio-squim: Reference-less speech quality and intelligibility measures in torchaudio," in Proc. ICASSP, 2023 Google scholar citations: 52 20

SQA for synthetic speech: AutoMOS

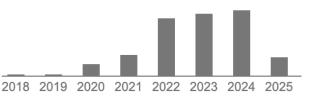
- Non-intrusive
- Learning target: human judgement
- Evaluation target: TTS
- Model architecture: LSTM
- Training data: 36 TTS systems, 168086 scores
- Contributions:
 very first DNN-based work for synthetic speech



Very close to human!

	Baseline	AutoMOS	GT
Utt-RMSE	0.553	0.462	0.512
Utt-LCC	0.454	0.668	0.764
Utt-SRCC	0.399	0.667	0.757
Sys-RMSE	0.132	0.073	0.034
Sys-LCC	0.795	0.938	0.987
Sys-SRCC	0.679	0.949	0.986

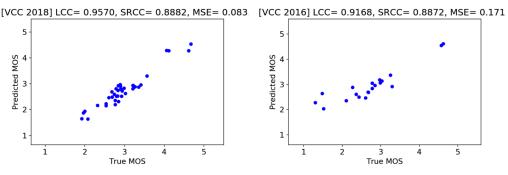
B. Patton, Y. Agiomyrgiannakis, M. Terry, K. Wilson, R. A. Saurous, and D. Sculley, "AutoMOS: Learning a non-intrusive assessor of naturalness-of-speech," in NIPS 2016 Workshop. Google scholar citations: 109



SQA for synthetic speech: MOSNet

- Non-intrusive
- Learning target: human judgement
- Evaluation target: VC
- Model architecture: CNN & LSTM
- Training data: Voice Conversion Challenge 2018
- Contributions:
 one of the first works with pre-trained model & easy-to-beat performance

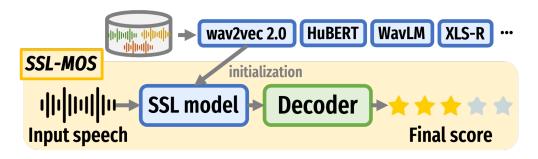
	utte	erance-l	evel	sy	stem-lev	vel	
Model _{batchsize}	LCC	SRCC	MSE	LCC	SRCC	MSE	
BLSTM ₁ [7]	0.511	0.484	0.604	0.826	0.808	0.165	
BLSTM ₁₆	0.487	0.453	0.658	0.818	0.797	0.190	
BLSTM ₆₄	0.251	0.254	0.803	0.412	0.427	0.404	
CNN ₁	0.638	0.587	0.486	0.945	0.875	0.058	
CNN_{16}	0.620	0.573	0.512	0.944	0.890	0.067	
CNN ₆₄	0.624	0.585	0.522	0.946	0.872	0.057	
CNN-BLSTM ₁	0.584	0.551	0.634	0.951	0.873	0.135	Decent
CNN-BLSTM ₁₆	0.607	0.569	0.540	0.944	0.897	0.055	
CNN-BLSTM ₆₄	0.642	0.589	0.538	0.957	0.888	0.084	correlation!



C.-C. Lo, S.-W. Fu, W.-C. Huang, X. Wang, J. Ya- magishi, Y. Tsao, and H.-M. Wang, "MOSNet: Deep Learning-Based Objective Assessment for Voice Con- version," in Proc. Interspeech 2019, 2019, pp. 1541–1545. 22 Google scholar citations: 352

SQA for synthetic speech: SSL-MOS

- Non-intrusive
- Learning target: human judgement
- Evaluation target: BVCC
- Model architecture: SSL (wav2vec 2.0)
- Training data: BVCC
- Contributions: one of the first SSL-based SQA works with pre-trained model

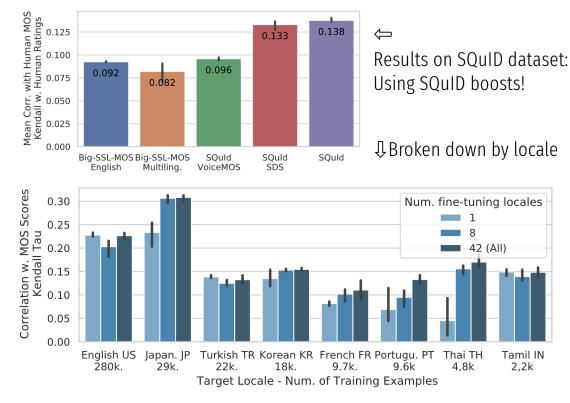


	Test set									
		Uttera	nce leve	l		Syste	m level			
Base model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU		
w2v_small	0.227	0.868	0.866	0.690	0.121	0.938	0.942	0.790		
libri960_big	0.342	0.823	0.820	0.635	0.136	0.901	0.901	0.730		
w2v_vox_new	0.342	0.767	0.753	0.570	0.112	0.903	0.900	0.721		
w2v_large	0.220	0.868	0.865	0.690	0.059	0.948	0.944	0.803		
xlsr_53_56k	0.281	0.821	0.816	0.633	0.107	0.902	0.894	0.730		
hubert_base_ls960	0.318	0.842	0.837	0.655	0.213	0.919	0.915	0.745		
hubert_large_ll60k	0.444	0.696	0.687	0.507	0.184	0.812	0.805	0.620		

E. Cooper, W.-C. Huang, T. Toda, and J. Yamagishi, "Generalization ability of MOS prediction networks," in Proc. ICASSP, 2022 Google scholar citations: 175

SQA for synthetic speech: SQUID (Speech Quality IDentification)

- Non-intrusive
- Learning target: human judgement
- Evaluation target: internal dataset
- Model architecture: SSL (mSLAM)
- Training data: internal TTS samples (~1M samples, 1476 systems)
- Contributions:
 first massive multi-lingual subjective SQA work

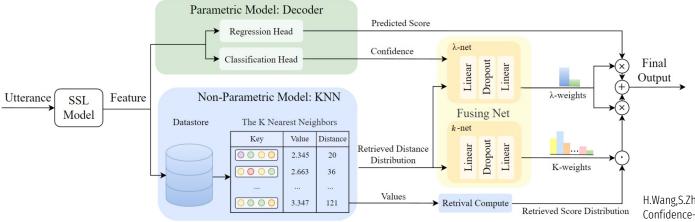


T. Sellam, A. Bapna, J. Camp, D. Mackinnon, A. P. Parikh, and J. Riesa, "SQuId: Measuring speech naturalness in many languages," in Proc. ICASSP, 2023 Google scholar citations: 26 24

SQA for synthetic speech: RAMP

(Retrieval Augmented MOS Prediction)

- Non-intrusive. Learning target: human judgement
- Training data: BVCC; Evaluation target: BVCC, SOMOS
- Model architecture: SSL + retrieval
- Contributions: top-performing system in VoiceMOS Challenge 2023, 2024



H.Wang,S.Zhao,X.Zheng,andY.Qin,"RAMP:Retrieval-Augmented MOS Prediction via Confidence-based Dynamic Weighting," in Proc. Interspeech, 2023, pp. 1095–1099.

Experiences and lessons from the VoiceMOS Challenge Series

The goal of the VoiceMOS challenge (VMC) series (or any scientific challenge)

https://sites.google.com/view/voicemos-challenge

Advertise the research of automatic data-driven MOS prediction for speech

Compare different approaches using **shared datasets** and **evaluation protocols**

Promote **discussion** about the future of this research field

The whole VMC series is about generalization

- In-domain (ID) & out-of-domain (OOD) generalization: test & train data are of the same/different distribution
- In practical situations for SQA, we should always assume it's OOD
 - Synthetic speech: different TTS system, different listening test, ...
 - Non-synthetic speech: different distortion types, levels, combinations, ...
- Ultimate goal: **an "almighty" system** that excels in all speech types

The history of VMC

- The VoiceMOS Challenge 2022 @ INTERSPEECH
 - In-domain prediction for synthetic speech (TTS, VC)
 - Results: best system achieved **0.939 SRCC**
- The VoiceMOS Challenge 2023 @ ASRU
 - Fully **out-of-domain** setting on singing voice conversion, French TTS, noisy speech
 - Results: reconfirmed that **OOD generalization is an issue**
- The VoiceMOS Challenge 2024 @ SLT
 - Zoomed-in tests, singing conversion/synthesis, semi-supervised SQA
- The AudioMOS Challenge 2025 @ ASRU
 - Expand to general audio: text-to-speech/audio/music; different speech frequencies

VMC 2022: tracks

Track Lang	# Sa		# ratings		
HUCK	Lang	Train	Dev	Test	per sample
Main	Eng	4,974	1,066	1,066	8
OOD	Chi	Label: 136 Unlabel: 540	136	540	10-17

• Main track: BVCC

- Samples from **187** different systems all rated together in one listening test
 - Past Blizzard Challenges (for TTS) 2008 2018
 - Past Voice Conversion Challenges (for voice conversion) 2016 2020
 - ESPnet-TTS (implementations of modern TTS systems), 2020
- Test set is split from the training set \Rightarrow **in-domain**
 - Contains some unseen systems/listeners/speakers

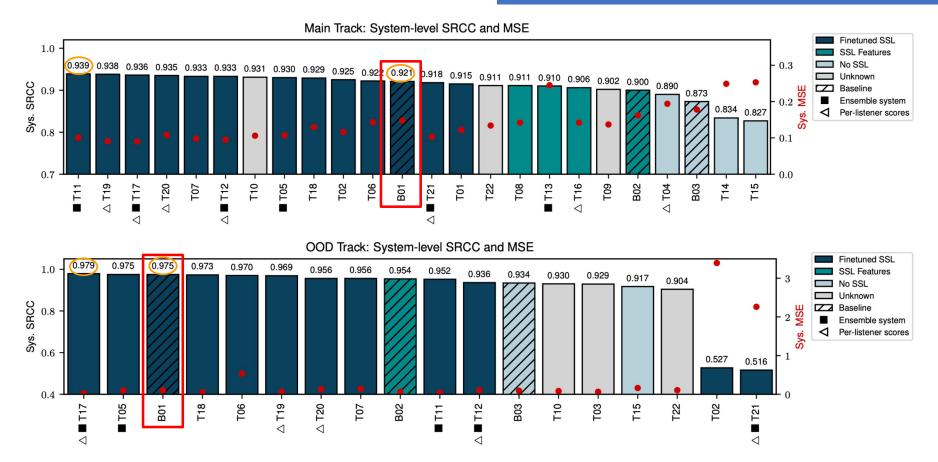
• OOD track: Blizzard Challenge 2019

- Chinese TTS samples from systems submitted to the 2019 Blizzard Challenge
- Test set is split from the training set ⇒ in-domain
 - Contains unseen systems/listeners

Probably a bad naming... "limited-data" track might be better 🛞

VMC 2022: results

© Improvements over baseline

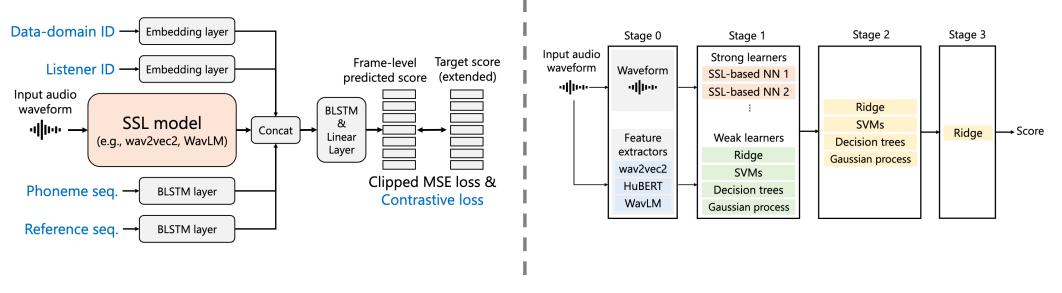


☺ Good performance even with 136 samples only
 ⇒ in-domain is probably "too simple"?

31

VMC 2022 top system: UTMOS

- Main track system: "slightly improved SSL-MOS" (according to 1st author)
- OOD track: ensemble of weak learners using stacking



T. Saeki, D. Xin, W. Nakata, T. Koriyama, S. Takamichi, and H. Saruwatari, "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022," in Proc. Interspeech, 2022, pp. 4521–4525. Google scholar citations: 229 32

VMC 2022: feedback

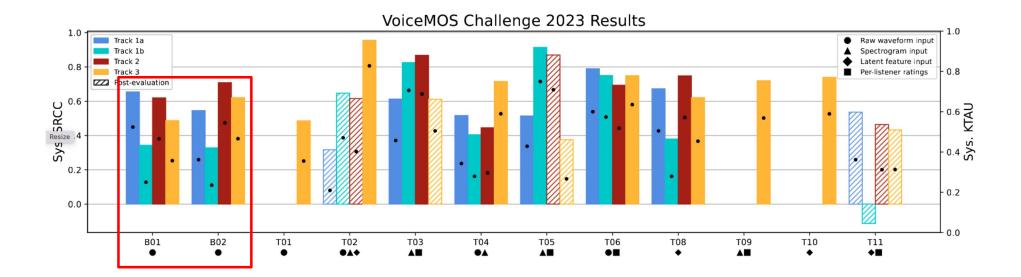
- About the dataset
 - Test set is too small
 - Is the number of samples per system enough? (T06)
- What do you want to see in the next challenge?
 - Other **speech types**
 - Telephone, conference, speech coding (low bitrate, neural coding), noisy speech (most requested)
 - Music, dialogue TTS, high-quality TTS, speaker similarity, confidence
 - More languages (4 participants)
 - Other **listening test types** (A/B preference tests, MUSHRA tests, or simply predict the ranking)
 - Higher **sampling rate** (16000 Hz is too low, at least 22050/24000)

VMC 2023: tracks

- Track 1: Blizzard Challenge 2023 French TTS
- Track 2: Singing Voice Conversion Challenge singing voice conversion
- Track 3: Mandarin noisy & enhanced speech
- **Real-world** and challenging MOS prediction in collaboration with ongoing synthesis competitions.
 - Teams submit their predictions before the actual listening test results have been collected.
 - Thus, no official training data!

Track	Туре	Lang	Systems	Samples per system	# ratings per sample
Track 1a Track 1b	TTS	Fre	Hub: 21 Spoke: 17	42 34	15
Track 2	Singing VC	Eng	In-dom: 25 Cross-dom: 24	80	6
Track 3	Noisy & enhanced	Chi	97	20	5.3

VMC 2023: results



Some systems beat the baselines
 Difficult to predict all domains well with a single system

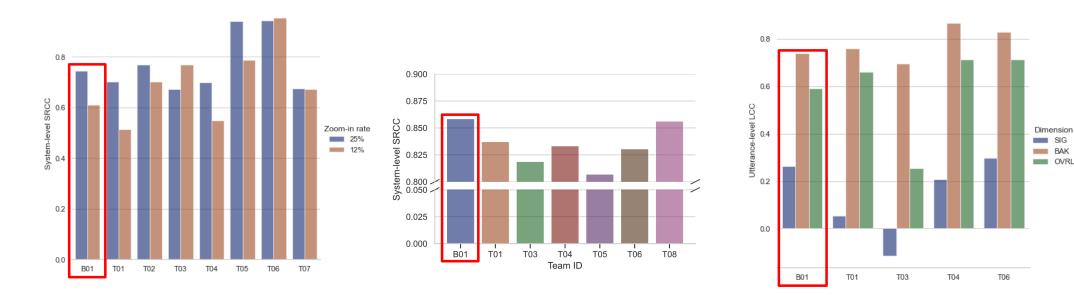
VMC 2024: tracks

- Track 1: MOS prediction for "zoomed-in" systems
 - Motivation: evaluate synthetic systems of high-quality
- Track 2: MOS prediction for singing voice
 - Using the SingMOS dataset: natural singing voices, vocoder analysis-synthesis, singing voice synthesis/conversion samples

• Track 3: semi-supervised MOS prediction for clean/noisy/enhanced speech

- Setting: very limited amount of training data & zero-shot setting
- Beyond quality: speech signal quality (SIG), background intrusiveness (BAK), overall quality (OVRL)

VMC 2024: results



Some systems beat the baselines
We had less participants this year, thus less insights...

AMC 2025: tracks

- Track 1: MOS prediction for text-to-music systems
 - Based on the MusicEval dataset: clips from 31 TTM systems
 - Ratings from music experts

https://sites.google.com/view/voicemoschallenge/audiomos-challenge-2025

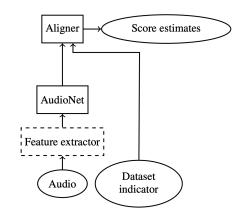
- Two evaluation axes: overall musical impression, textual alignment
- Track 2: Audiobox-aesthetics-style prediction for text-to-speech, text-toaudio and text-to-music systems
 - Based on the <u>Meta Audiobox Aesthetics</u>
 - Train data: natural speec/audio/music samples; test data: TTS/TTA/TTM samples
- Track 3: MOS prediction for speech in high sampling frequencies
 - Speech samples from 16/24/48 kHz

Stay tuned for the challenge summary!

Ongoing work and unexplored problems

Towards zero-shot, general purpose SQA

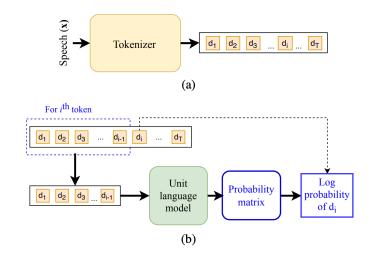
- Common idea: how about we **combine** multiple datasets (and their scores)?
- Problem: "corpus effect"
 - Same type of speech can receive different scores on different listening tests
 - Stems from the "relative" nature of listening tests like MOS
- Recent representative work: **AlignNet**
 - Use a dataset embedding (indicator) to learn the bias in each dataset



J. Pieper and S. Voran, "Alignnet: Learning dataset score alignment functions to enable better training of speech quality estimators," in Proc. Interspeech, 2024, pp. 82–86.

Alternative solution 1: unsupervised SQA

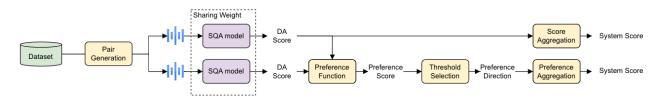
- SQA models are usually supervised: need to be trained with <speech, score>
 - New speech type \Rightarrow human label needed. Costly!
- Popular idea: learn a prior model with the concept of "natural speech"
- Representative work: SpeechLMScore
 - Perplexity of an input speech in the discrete speech token space
- What's the advantage?
 - No training = no overfitting = better generalization!



S. Maiti, Y. Peng, T. Saeki, and S. Watanabe, "SpeechLMScore: Evaluating speech generation us- ing speech language model," in Proc. ICASSP, 2023

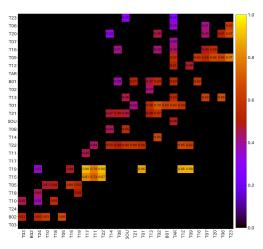
Alternative solution 2: learn from preference data

- Preference test can be speeded up with online learning
 - Automatically stops comparing systems that are obviously different in quality
- Learning from preference data alleviates biases in MOS
 - Listener preference bias, equal-ranging bias
 - Result: **better generalization ability** (both in-domain and OOD!)



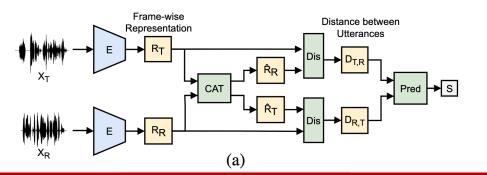
Y. Yasuda, and T. Toda. "Automatic design optimization of preference-based subjective evaluation with online learning in crowdsourcing environment," arXiv preprint arXiv:2403.06100 (2024).

C.-H. Hu, Y. Yasuda, and T. Toda. "E2EPref: An end-to-end preference-based framework for speech quality assessment to alleviate bias in direct assessment scores," Computer Speech & Language, vol. 93, 2025



Evaluation dimensions beyond general quality

- Many attempts to learn from **subjective speaker similarity** data
- Dataset: VoxSim
 - Derived from VoxCeleb; 41k utterance pairs, nearly 70k ratings
- Model: SVSNet



© Current results are not significantly better than simple cosine similarity of speaker embeddings (ex., x-vectors)

What about other dimensions ⇒ Emotion, expressiveness, accent, non-verbal content...

C.-H. Hu, Y.-H. Peng, J. Yamagishi, Y. Tsao, and H.- M. Wang, "SVSNet: An End-to-End Speaker Voice Similarity Assessment Model," IEEE Signal Processing Letters, vol. 29, pp. 767–771, 2022.

J. Ahn, Y. Kim, Y. Choi, D. Kwak, J.-H. Kim, S. Mun, and J. S. Chung, "VoxSim: A perceptual voice similarity dataset," in Proc. Interspeech, 2024.

Interpretable/explainable SQA

- A recent trend: use LLMs for SQA
 - "Audio captioning" but focusing on quality
 - More than just "another LLM application"!
- Provide "explanations" beyond just "scores"
 - Localized evaluation (when & where)
 - Attributed evaluation (what & how)
 - ⇒ No extinction between synthetic/non-synthetic speech!
- Evaluation is the problem
 - Natural language description
 - = larger variance compared to scores

IMO: the ultimate goal in SQA

- Distortion score: 3
- Distortion description: There is a voice feels distorted with intermittent electric current quality from 1.5~2.5s.

- Overall quality score: 2
- **Reasoning** for overall quality score: The overall quality is rated poorly due to the **intrusive background noise** and high listening effort, leading to a less favorable impression of the speech.

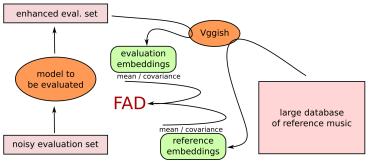
Wang, S., Yu, W., Chen, X., Tian, X., Zhang, J., Tsao, Y., ... & Zhang, C, "QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions." arXiv preprint arXiv:2503.20290.

S. Wang, W. Yu, Y. Yang, C. Tang, Y. Li, J. Zhuang, X. Chen, X. Tian, J. Zhang, G. Sun, et al, "Enabling auditory large language models for automatic speech quality evaluation," in Proc. ICASSP, 2025

C. Chen, Y. Hu, S. Wang, H. Wang, Z. Chen, C. Zhang, C.-H. Huck Yang, and E. S. Chng, "Audio large language models can be descriptive speech quality evaluators," in Proc. ICLR, 2025

Status quo in text-to-audio/text-to-music evaluation is mostly objective

- Fréchet audio distance (FAD): evaluates general audio fidelity
 - Set-wise comparison (not sample-wise); calculates statistics in an embedding space
 - Critiques: <u>embedding-sensitive</u>; <u>sample size-sensitive</u>; <u>correlates poorly with perception</u>
 - Improved attempts: <u>KAD</u>, <u>MMD</u>
- **<u>CLAP score</u>**: evaluates alignment between audio and text prompt
 - Cosine similarity between text embedding and audio embedding
 - Critique: correlates poorly with perception



Trend: more and more articles criticizing the inconsistency of these metrics ⇒ not completely the metrics' fault... the "one-to-many" problem is just too difficult!

Concluding remarks

- Taxonomy in SQA
 - Evaluation target: synthetic speech / non-synthetic speech
 - Subjective / objective
 - Intrusive / non-intrusive
 - Signal-based / model-based
- Long-standing challenge: **out-of-domain generalization** (= all-purpose)
 - Important theme of the Voice/AudioMOS Challenge series
- Sooooo many unsolved (and interesting!) problems, even beyond speech!

Advertisements

- I have co-authored <u>a review paper on SQA for synthetic speech</u>
 - Mostly done with the amazing Erica Cooper (NICT, Japan)
 - E. Cooper, W.-C. Huang, Y. Tsao, H.-M. Wang, T. Toda, and J. Yamagishi, "A review on subjective and objective evaluation of synthetic speech," Acoustical Science and Technology, vol. 45, no. 4, pp. 161–183, 2024.
- I will co-present <u>a tutorial in INTERSPEECH 2025</u>, also on the title ""Automatic Quality Assessment for Speech and Beyond"
 - With Erica Cooper and Jiatong Shi (CMU, USA)