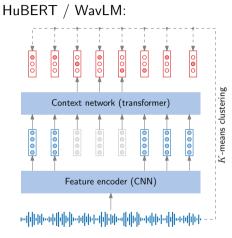
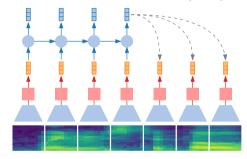
Test slide

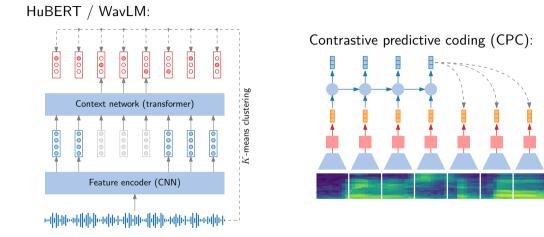
- Can you see my pointer?
- Can you hear this? Play
- Can you see the video on the next slide?

Voice conversion and the geometry of self-supervised speech representations


Conversational AI Reading Group, June 2025

Herman Kamper




Self-supervised spoken language models

Contrastive predictive coding (CPC):

Self-supervised spoken language models

Caveat: SSL = WavLM layer six (1024 dimensional)

Voice conversion is useful for understanding SSL features

Agenda:

- Introduce two simple voice conversion approaches
- They give surprisingly good results, despite being dumb
- What does this tell us about the geometry of SSL features?

Voice conversion is useful for understanding SSL features

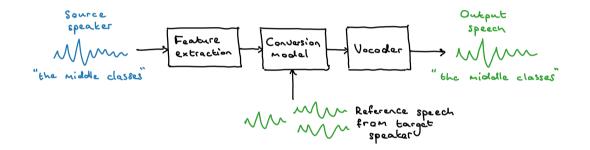
Agenda:

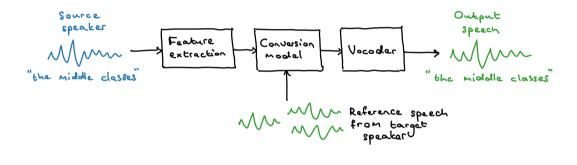
- Introduce two simple voice conversion approaches
- They give surprisingly good results, despite being dumb
- What does this tell us about the geometry of SSL features?

Main takeaways:

- The usefulness of voice conversion for probing
- Simpler methods are awesome

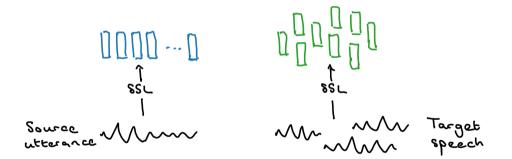
kNN-VC: Voice conversion with just nearest neighbours

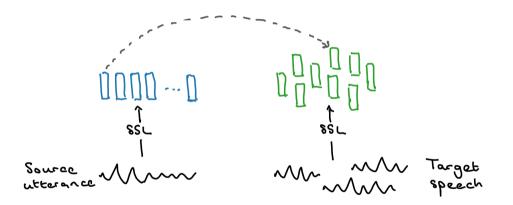

Benjamin van Niekerk

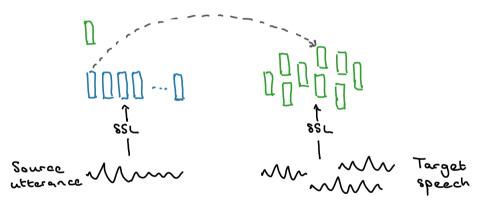

Matthew Baas

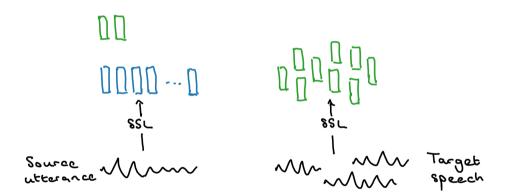
M. Baas, B. van Niekerk, and H. Kamper, "Voice conversion with just nearest neighbours," in *Interspeech*, 2023. M. Baas and H. Kamper, "Voice conversion for stuttered speech, instruments, unseen languages and textually described voices," *Communications in Computer and Information Science*, 2023

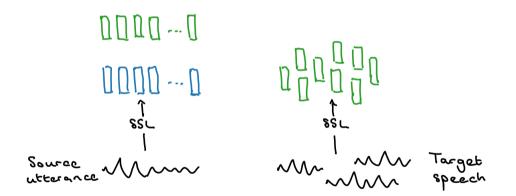
Voice conversion

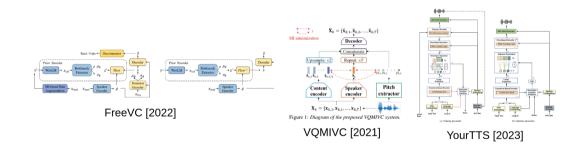

Voice conversion











Existing voice conversion systems

Voice conversion results

Model	$WER\downarrow$	$EER \uparrow$	$MOS\uparrow$	SIM ↑
Ground truth	5.96	-	4.24	3.19
VQMIVC (Wang et al. 2021)	59.46	2.22	2.70	2.09
YourTTS (Casanova et al. 2022)	11.93	25.32	3.53	2.57
FreeVC (Li et al. 2022)	7.61	8.97	4.07	2.38
kNN-VC	7.36	37.15	4.03	2.91

Fun conversions

Cross-lingual conversion:

Source: Play

Reference: Play

Output: Play

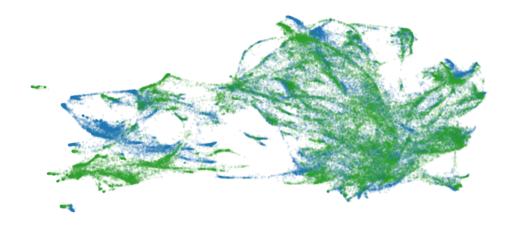
Whispered music conversion:

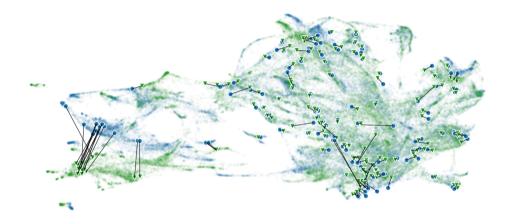
Source: Play Reference: Play Output: Play

Human-to-animal conversion:

Source: Play Reference: Play Output: Play

Applications of kNN-VC


- Stuttered reference speech (Baas and Kamper 2023):
- Source:
 Play
 Reference:
 Play
 Output:
 Play
 Baseline:
 Play
 (TTS)


 Cross-lingual child voice conversion (Jacobs et al. 2025):
 Source:
 Play
 Reference:
 Play
 Output:
 Play
 (Afrikaans)

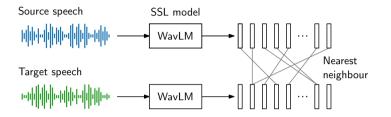
 Source:
 Play
 Reference:
 Play
 Output:
 Play
 (isiXhosa)
- Singing voice conversion (Shao et al. 2025)
- Dysarthric to healthy speech (El Hajal et al. 2025)
- Anonymisation (Franzreb et al. 2025)

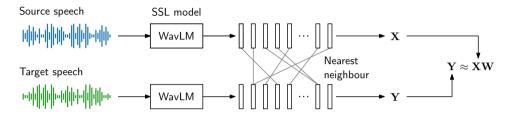
What does this tell us about SSL representations?

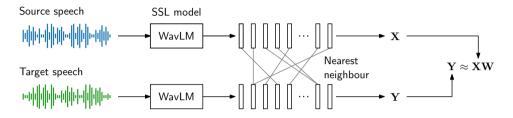
- Phonetic content is matched through cosine distance
- But speaker characteristics are also still strongly captured

LinearVC: Voice conversion with just linear regression

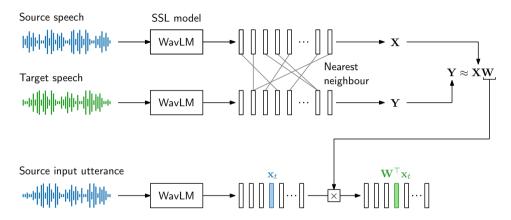
Benjamin van Niekerk

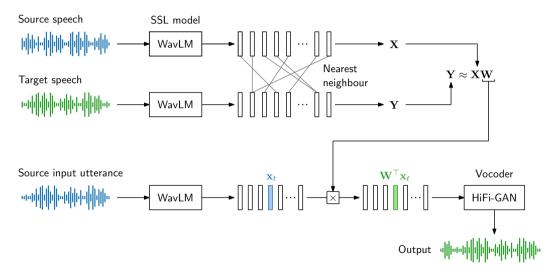

Julian Zaïdi

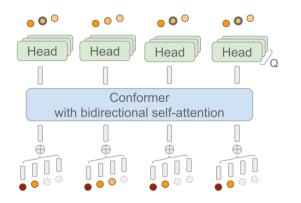


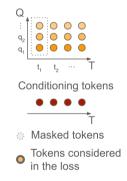

Marc-André Carbonneau

H. Kamper, B. van Niekerk, J. Zaïdi, and M-A. Carbonneau,


"LinearVC: Linear transformations of self-supervised features through the lens of voice conversion," in Interspeech, 2025.

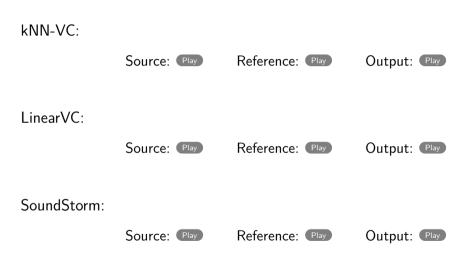



Source input utterance \mathbf{x}_t $\mathsf{WavLM} \longrightarrow \mathbb{Q} \subseteq \mathbb{Q} \subseteq \mathbb{Q}$

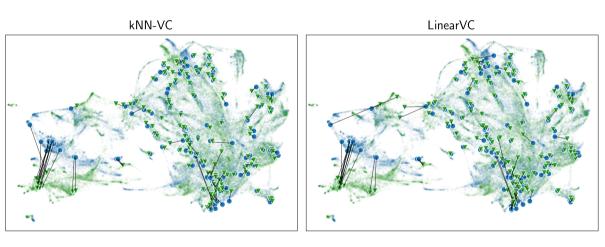

LinearVC

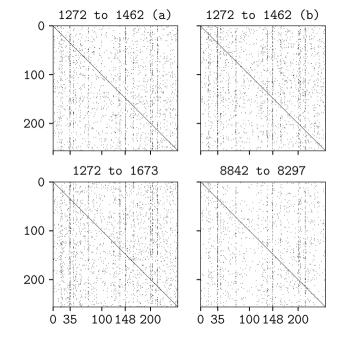
Codec-based spoken language model for voice conversion

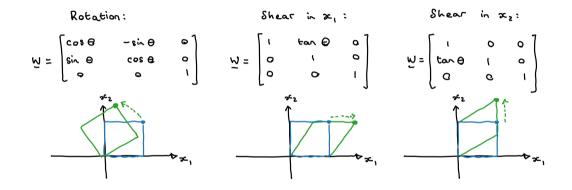
SoundStream tokens



SoundStorm (Borsos et al. 2023)

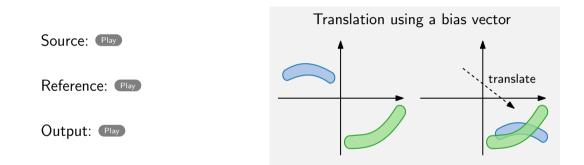

Voice conversion results


Model	$WER\downarrow$	$EER \uparrow$	Naturalness \uparrow	Similarity \uparrow
Ground truth	4.3	-	-	-
kNN-VC (Baas et al. 2023)	5.7	38.9	60.6±3.6	67.2±2.7
FreeVC (Li et al. 2022)	5.7	10.5	71.1 ± 3.6	48.7±2.9
SoundStorm (Borsos et al. 2023)	4.6	30.2	58.6±4.0	$68.6 {\pm} 3.2$
LinearVC	4.9	33.6	62.5±3.5	67.5±2.6

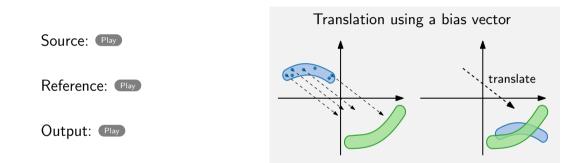

Samples

This should freak you out. Let's try to make sense of this.

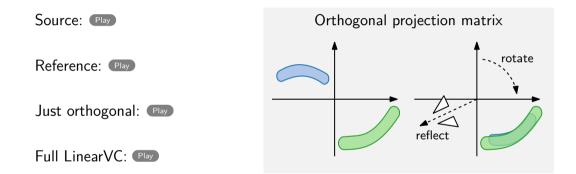
https://en.wikipedia.org/wiki/Transformation_matrix


Voice conversion with just a bias vector

Source: Play

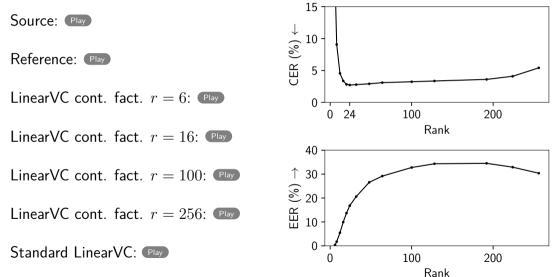

Reference: Play

Output: Play


Voice conversion with just a bias vector

Voice conversion with just a bias vector

Voice conversion with just rotation

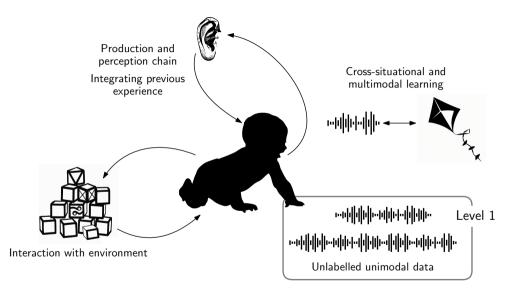

Let's try to visualise this

LinearVC with content factorisation

$$\begin{split} \min_{\mathbf{C},\mathbf{S}_k} \quad \sum_{k=1}^K & \|\mathbf{X}_k - \mathbf{C}\mathbf{S}_k\|_F^2 \\ \text{subject to} \quad & \mathsf{rank}(\mathbf{C}\mathbf{S}_k) \leq r \end{split}$$

LinearVC with content factorisation $\min_{\mathbf{C},\mathbf{S}_k} \quad \sum_{k=1}^{\kappa} \|\mathbf{X}_k - \mathbf{C}\mathbf{S}_k\|_F^2$ subject to $\operatorname{rank}(\mathbf{CS}_k) \leq r$ $\left| \begin{array}{c} X_{k} \\ X_{k} \end{array} \right| \approx \left[\begin{array}{c} S_{k} \\ S_{k} \end{array} \right] \right|$ N×г NXD Shared Speaker-specific Content transformation Speaker data

LinearVC with content factorisation


34 / 38

Voice conversion results

Model	$WER\downarrow$	$EER \uparrow$	Naturalness \uparrow	Similarity \uparrow
Ground truth	4.3	-	-	-
kNN-VC (Baas et al. 2023)	5.7	38.9	60.6±3.6	67.2±2.7
FreeVC (Li et al. 2022)	5.7	10.5	71.1±3.6	48.7±2.9
SoundStorm (Borsos et al. 2023)	4.6	30.2	$58.6{\pm}4.0$	$68.6 {\pm} 3.2$
LinearVC	4.9	33.6	$62.5 {\pm} 3.5$	67.5±2.6
LinearVC content factorisation	4.7	35.2	62.3±3.7	64.2±3.1

Conclusion

- Simple approaches are very useful: Can do practical voice conversion!
- Probing experiments have their place, but ...
- Synthesis provides a unique perspective on SSL geometry
- Allows us to quickly see (hear, actually) salient effects
- Future work:
 - Formalise cartoon interpretations
 - $\circ~$ Use content space in downstream applications

https://bshall.github.io/knn-vc/
https://www.kamperh.com/linearvc/