Self-introduction

- 1. Senior researcher at Microsoft
- 2. Got PhD at NTU under Prof. Hung-yi Lee¹ in speech processing
- 3. Publish more than 20 first-author in ICASSP / Interspeech / TASLP / ACL/ ASRU / SLT, etc
- 4. Main contributor of ²S3prl (2.2k+ GitHub stars)
- 5. Internships: Microsoft * 2 (speech and audio generation), Meta * 2 (speech enhancement), Amazon (Model compression), Tencent (Model compression)
- 6. ³Google PhD Fellowship (1/75 over the world)
- 7. Visiting student at Tsinghua University and the Chinese University of Hong Kong

¹Famous YouTuber

²S3prl: a speech self-supervised learning toolkit for all the speech tasks ³75 students get the award over the world every year

Neural audio codecs in the era of speech LMs

Neural audio codec - Brief recap

Neural audio codec models typically consist of an encoder, a vector quantization (VQ) module, and a decoder:

- 1. Encoder: down-sample the time-domain audio (16k) to extract frame-wise audio features (50 Hz).
- 2. The VQ module: convert each frame-wise audio feature into discrete tokens.
- 3. Decoder: reconstruct the time-domain audio signal from the discrete tokens.

Audio compression

Discrete audio tokens

Text language models -> speech language models

- Language modeling is successful in NLP domain
- Speech contains more information than text

~25 characters / second \rightarrow 16,000 samples / second

Next token prediction on raw audio signals - Wavenet

Pros:

• Can produce high-quality speech

Cons:

• Does not learn high-level structure (random babble)

Codec codes for speech language modeling

Numerous speech LMs have been proposed

https://github.com/ga642381/speech-trident Speech trident survey

Tons of neural audio codecs come into stage

Speech/Audio LLM

Research roadmap and open questions

First- or corresponding-author paper Co-author paper

TS3-Codec: Transformer-Based Simple Streaming Single Codec

Haibin Wu, Naoyuki Kanda, Sefik Emre Eskimez, Jinyu Li

Microsoft, USA

haibinwu@microsoft.com

TL;DR: The first attempt to develop a convolution-free, transformer-only NAC.

Recap the functionality of codec in speech LMs

- Listen to the speech Frontend
- Speak out the response Backend

Codec should have some good properties to support the speech LM

Good property for speech LM - Low computation

Low-co • fas

Low-computation NACs enable

- fast encoding and decoding
- reducing computational costs and leaving more computation resources available for SLMs

Good property for speech LM - Low token rate

Low token rate:

Long sequences generally make LLM training slow and unstable. Therefore, it is preferable to use low-token-rate NAC models for SLM.

Good property for speech LM - Streaming

- Full-duplex communication, where users and machines can speak and respond simultaneously, is a popular and ongoing challenge in the SLM field.
- The speech LM should listen and speak in the same time with fast responses.
- To enable seamless real-time interactions, the codec should support streaming processing, allowing it to encode user speech and generate speech response with low latency.

Good property for speech LM - Single-Codebook

A single codebook-based model is preferable to a multiple-codebook-based model, because the latter introduces additional complexity to the architecture of SLMs:

- The combination of auto-regressive and non-autoregressive models (Valle)
- Delay pattern (MusicGEN)
- the temporal and depth transformers (uniaudio)

20

Limitations of current neural audio codecs

- 1. High token rate (long token sequence)
- e.g., 6kbps Descript audio codec has 600 tokens per second
- Make auto-regressive modeling challenging and computational expensive
- 2. Poor reconstruction quality at low bit rate (e.g., 1 kbps)
- Most previous studies work on bit rate > 2kbps
- Can we go further under 1.0 kbps?
- 3. Less works explore the streaming capacity of codecs

Few research of Transformers in NAC domain

- 1. Most NAC models rely on CNNs as the dominant architecture, with only a few incorporating transformers as intermediate layers within the CNN encoder-decoder framework.
- 2. However, the performance of a purely transformer-based and convolution-free architecture in NACs remains unexplored.

TS3-Codec

Architecture

- WaveNeXt frond and back-ends¹ [1]
- Transformer-only architecture² with self-attention left fixed window
- Reduce the codebook embedding dimension to enlarge codebook usage [3]
- Enlarge the codebook size to 65k / 130k

¹Better performance than Vocos [2]

²Reason 1: Low computation. E.g. TS3-Codec (1.6B paras): 60.52G MACs, while BigCodec (160M paras): 61.1G MACs ²Reason 2: Transformers offer simplicity in model design

Why Transformer rather than CNNs

- 1. CNNs are well-known for their parameter efficiency and reusability. On the other hand, for similar parameter sizes, CNNs typically require significantly more computation than transformers.
- 2. Convolutions have inherent biases. Convolutions apply fixed weighted-sum weights across all intermediate feature maps across different time stamps.
- 3. Transformers offer simplicity in model design. CNNs require careful tuning of kernels and up- and down-sampling mechanisms due to their inherent biases.

Experiments - Baselines

Table 1: Comparison between baseline codecs. SEM represents semantic distillation. RVQ and single means residual and single vector quantization, respectively. SA means self-attention.

Codec	SEM	Streaming	VQ type	Architecture
Encodec [15]	X	1	RVQ	Conv + LSTM
DAC [36]	X	×	RVQ	Conv
SpeechTokenizer [37]	1	×	RVQ	Conv + LSTM
Mimi [11]	1	1	RVQ	Conv + Transformer
BigCodec [24]	X	×	Single	Conv + LSTM
WavTokenizer [10]	×	×	Single	Conv + LSTM + SA

Experiments - 1000bps non-streaming

	<u>Properties</u>					Complexity Intelligibility Distortion					ortion	<u>Naturalness</u>		
			l			γ	٨	γ		\sim				
Model Tag	Streaming	Bitrate	Codebook Layer	Frame Rate	Token Rate	MACs	Paras	WER↓	STOI↑	PESQ↑	MCD↓	SPK-SIM↑	UTMOS↑	
Ground Truth	-	-	-	-	-	-	-	2.0	1.000	4.64	0.00	1.00	4.09	
DAC (A) SpeechTokenizer (B1) BigCodec (C) WavTokenizer (D1)	× × ×	1500 1000 1040 975	2 2 1 1	75 50 80 75	150 100 80 75	55.6G 17.1G 67.1G 6.3G	74.1M 103.7M 159.4M 80.6M	7.2 3.9 2.8 6.8	0.829 0.768 0.935 0.886	1.48 1.21 2.68 2.05	4.83 6.30 3.01 4.00	0.47 0.33 0.84 0.59	1.68 2.32 4.11 3.89	
Encodec (E1) Mimi (F1)	<i>·</i>	1500 1100	2 8	75 12.5	150 100	5.6G 8.1G	14.9M 79.3M	4.9 3.0	0.845 0.905	1.56 2.22	4.32 3.81	0.60 0.73	1.58 3.60	
BigCodec-S (G1) BigCodec-S (G2)	1	1040 1040	1 1	80 80	80 80	7.1G 61.1G	21.8M 159.9M	4.6 3.8	0.888 0.906	1.96 2.17	3.80 3.52	0.56 0.65	3.41 3.73	
TS3-Codec (X1) TS3-Codec (X2)	<i>J</i> <i>J</i>	800 850	1 1	50 50	50 50	7.6G 7.6G	203.6M 203.6M	3.6 3.6	0.909 0.910	2.22 2.23	3.52 3.50	0.68 0.68	3.85 3.84	

Among the four non-streaming baselines, BigCodec (C) demonstrates the best performance at approximately 1000 bps, surpassing other codec models by a significant margin across all metrics.

Used for designing a streaming CNN codec baseline:

- 1. CNN-based model
- 2. The state-of-the-art single-codebook codec

Experiments - 1000bps non-streaming

	<u>Properties</u>					Complexity Intelligibility Distortion					ortion	Naturalness		
			l			γ	<u>ا</u> ــــــــــ	γ	\bigwedge					
Model Tag	Streaming	Bitrate	Codebook Layer	Frame Rate	Token Rate	MACs	Paras	WER↓	STOI↑	PESQ↑	MCD↓	SPK-SIM↑	UTMOS↑	
Ground Truth	-	-	-	-	-	-	-	2.0	1.000	4.64	0.00	1.00	4.09	
DAC (A) SpeechTokenizer (B1) BigCodec (C)	× × ×	1500 1000 1040	2 2 1	75 50 80	150 100 80	55.6G 17.1G 67.1G	74.1M 103.7M 159.4M	7.2 3.9 2.8	0.829 0.768 0.935	1.48 1.21 2.68	4.83 6.30 3.01	0.47 0.33 0.84	1.68 2.32 4.11	
WavTokenizer (D1)	X	975	1	75	75	6.3G	80.6M	6.8	0.886	2.05	4.00	0.59	3.89	
Encodec (E1) Mimi (F1) BigCodec-S (G1) BigCodec-S (G2) TS3-Codec (X1) TS3-Codec (X1)	• • • • •	1500 1100 1040 1040 800	2 8 1 1 1	75 12.5 80 80 50	150 100 80 80 50	5.6G 8.1G 7.1G 61.1G 7.6G	14.9M 79.3M 21.8M 159.9M 203.6M	4.9 3.0 4.6 3.8 3.6 2.6	0.845 0.905 0.888 0.906 0.909	1.56 2.22 1.96 2.17 2.22	4.32 3.81 3.80 3.52 3.52	0.60 0.73 0.56 0.65 0.68	1.58 3.60 3.41 3.73 3.85 2.84	
TS3-Codec (X2)		850	1	50	50	7.6G	203.6M	3.6	0.910	2.23	3.50	0.68	3.84	

WavTokenizer (D1) achieves good UTMOS scores, as highlighted in their paper, where they emphasize that reconstructed utterances from their models have strong naturalness.

Experiments - 1000bps streaming

	<u>Properties</u>					Complexity Intelligibility Distortion					ortion	Naturalnes		
			/			γ	ــــــــــــــــــــــــــــــــــــــ	γ		\sim				
Model Tag	Streaming	Bitrate	Codebook Layer	Frame Rate	Token Rate	MACs	Paras	WER↓	STOI↑	PESQ↑	MCD↓	SPK-SIM↑	UTMOS↑	
Ground Truth	-	-	-	-	-	-	-	2.0	1.000	4.64	0.00	1.00	4.09	
DAC (A) SpeechTokenizer (B1) BigCodec (C)	X X X	1500 1000 1040	2 2 1	75 50 80	150 100 80	55.6G 17.1G 67.1G	74.1M 103.7M 159.4M	7.2 3.9 2.8	0.829 0.768 0.935	1.48 1.21 2.68	4.83 6.30 3.01	0.47 0.33 0.84	1.68 2.32 4.11	
WavTokenizer (D1) Encodec (E1) Mimi (F1) BigCodec-S (G1) BigCodec-S (G2) TS3-Codec (X1) TS3-Codec (X2)		975 1500 1100 1040 1040 800 850	1 2 8 1 1 1 1	75 75 12.5 80 80 50 50	75 150 100 80 80 50 50	6.3G 5.6G 8.1G 7.1G 61.1G 7.6G 7.6G	80.6M 14.9M 79.3M 21.8M 159.9M 203.6M 203.6M	6.8 4.9 3.0 4.6 3.8 3.6 3.6	0.886 0.845 0.905 0.888 0.906 0.909 0.910	2.05 1.56 2.22 1.96 2.17 2.22 2.23	4.00 4.32 3.81 3.80 3.52 3.52 3.50	0.59 0.60 0.73 0.56 0.65 0.68 0.68	3.89 1.58 3.60 3.41 3.73 3.85 3.84	

- TS3-Codec models perform the **best** for STOI, PESQ, MCD, UTMOS, and the second best for WER and SPK-SIM.
- Mimi performs the best for WER, probably because of their inclusion of semantic distillation.

Experiments - 600bps

	Properties					Complexity Intelligibility Distortion						Naturalness	
Model Tag	Streaming	Bitrate	Codebook Layer	Frame Rate	Token Rate	MACs	Paras	WER↓	STOI ↑	PESQ↑	MCD↓	SPK-SIM↑	UTMOS ↑
Ground Truth	-	-	-	-	-	-	-	2.0	1.000	4.64	0.00	1.00	4.09
SpeechTokenizer (B2) WavTokenizer (D2)	X X	500 520	1 1	50 40	50 40	17.1G 3.4G	103.7M 80.9M	4.9 8.0	0.675 0.868	1.12 1.88	8.38 4.32	0.17 0.57	1.34 3.77
Encodec (E2) Mimi (F2) BigCodec-S (G3) BigCodec-S (G4) TS3-Codec (X3)	\$ \$ \$ \$	750 687.5 640 640 640	1 5 1 1 1	75 12.5 40 40 40	75 62.5 40 40 40	5.6G 8.1G 4.6G 39.6G 6.2G	14.9M 79.3M 21.8M 160.5M 204.4M	29.0 4.0 5.9 5.4 4.9	0.770 0.872 0.870 0.889 0.893	1.23 1.82 1.78 1.96 2.01	5.66 4.40 4.16 3.97 3.81	0.25 0.58 0.50 0.58 0.61	1.25 3.27 3.20 3.68 3.69
TS3-Codec (X4)	 ✓ 	680	1	40	40	6.2G	204.4M	4.5	0.897	2.06	3.75	0.63	3.73

- TS3-Codec models achieve the best performance in STOI, PESQ, MCD, SPK-SIM, and UTMOS, while securing the second-best WER
- TS3-Codec also outperforms the two non-causal baselines across all metrics.
- SpeechTokenizer performs poorly in most metrics, but its WER is relatively decent. Upon listening, some male voices are distorted to sound like female robotic speech, yet the content remains intelligible.

Experiments - TS3-Codec vs BigCodec

- Cold color ones: BigCodec-S
- Warm color ones: TS3-Codec

Figure 3: Comparison between BigCodec-S and TS3-Codec (Bitrate ≈ 600 bps). To enhance visualization, the y-axes for WER and MCD are inverted, so that model points in the upper-left corner exhibit the best performance with the least computational cost.

Experiments - TS3-Codec vs BigCodec

• Under similar computational budgets, TS3-Codec always outperforms BigCodec-S significantly across all metrics

Figure 3: Comparison between BigCodec-S and TS3-Codec (Bitrate ≈ 600 bps). To enhance visualization, the y-axes for WER and MCD are inverted, so that model points in the upper-left corner exhibit the best performance with the least computational cost.

Experiments - TS3-Codec vs BigCodec

• TS3-Codec achieves comparable or better performance to BigCodec with significantly less computation.

Figure 3: Comparison between BigCodec-S and TS3-Codec (Bitrate ≈ 600 bps). To enhance visualization, the y-axes for WER and MCD are inverted, so that model points in the upper-left corner exhibit the best performance with the least computational cost.

Summary: TS3-Codec

- 1. Streaming¹
- 2. Low computation²
- 3. Single codebook
- 4. Low token rate (bitrate)³

Full duplex speech LMs Save computation for speech LMs Avoid complicated speech LM decoding structures Easy the speech LM training

¹Fixed left context window for self-attention

²TS3-Codec (1.6B paras): 60.52G MACs, while convolutional based BigCodec (160M paras): 61.1G MACs

³Bitrate=0.6k, token rate= 40

Research roadmap and open questions

First- or corresponding-author paper Co-author paper

Codec-SUPERB: An In-Depth Analysis of Sound Codec Models

Haibin Wu¹ *, Ho-Lam Chung^{1,3} *, Yi-Cheng Lin¹[†], Yuan-Kuei Wu¹[†], Xuanjun Chen¹[†], Yu-Chi Pai¹, Hsiu-Hsuan Wang¹, Kai-Wei Chang¹, Alexander H. Liu², Hung-yi Lee¹ ¹National Taiwan University ²Massachusetts Institute of Technology ³ASUS Intelligent Cloud Services hungyilee@ntu.edu.tw

TL;DR: The first benchmark to evaluate codec models from both signal- and application-level perspectives.

Codec-SUPERB - Motivation

- Great developments of codecs (transmission; codec-based LMs)
- Codec models are only evaluated on authors' selected settings

Codec-SUPERB - Motivation

• Only signal-level evaluation is conducted for codecs in previous papers

We need application-level evaluation

Unified evaluation framework

- 1. Input audio will undergo re-synthesis procedure
- 2. Both signal- and application-level evaluations are conducted

An overall score for clear comparison

- 1. Overall score: take the Harmonic mean for all normalized metrics
- 2. The overall score is with strong correlation to all signal-level metrics

Results (in 2023) on application-level evaluation

- x-axis is the bitrate, and y-axis is the application performance
- Encodec (E) with different bitrates serves as the baseline
- Four applications are involved for content, speaker, emotion and audio information

Results (in 2023) on application-level evaluation

- Under low bitrate, B (AcamediCodec) is preferable
- Under mid bitrate, D (DAC) is preferable

Other codec benchmarks

- DASB extracts codec discrete codes for discrete representation learning
- ESPNet-Codec unifies the codec training setting for various codec models

Research roadmap and open questions

First- or corresponding-author paper Co-author paper

CodecFake: Enhancing Anti-Spoofing Models Against Deepfake Audios from Codec-Based Speech Synthesis Systems

Haibin Wu^{1,2}, Yuan Tseng^{1,2}, Hung-yi Lee^{1,2}

¹Speech Processing and Machine Learning Laboratory, National Taiwan University ²Graduate Institute of Communication Engineering, National Taiwan University f07921092@ntu.edu.tw

TL;DR: The first anti-spoofing dataset to counter codec-based speech synthesis deepfake attacks.

Codec-based speech generation systems

- Generate speech by modeling discrete speech codes
- · Mimic one's voice with 3 seconds of audio

Can previous anti-spoofing models counter such attacks?

Use the state-of-the-art anti-spoofing model AASIST

Aasist: Audio anti-spoofing using integrated spectro-temporal graph attention networks

J Jung, HS Heo, H Tak, H Shim... - ICASSP 2022-2022 ..., 2022 - ieeexplore.ieee.org

... approach, named AASIST, outperforms the current state-of-the-art by 20% relative. Even a lightweight variant, AASIST-L, with only 85k parameters, outperforms all competing systems. ...

☆ 儲存 59 引用 被引用 306 次 相關文章 全部共 12 個版本

Equal error rate for codec-based TTS systems

ASVspoof (All)

AASIST AASIST-L

Use the mainstream anti-spoofing dataset ASVspoof

ASVspoof 2019: Future horizons in spoofed and fake audio detection <u>M Todisco</u>, <u>X Wang</u>, <u>V Vestman</u>, <u>M Sahidullah</u> ... - arXiv preprint arXiv..., 2019 - arxiv.org ASVspoof, now in its third edition, is a series of community-led challenges which promote the development of countermeasures to protect automatic speaker verification (ASV) from the ... Stored \mathfrak{V} citations, cited 712 times, all related articles, 24 versions in total \gg

1	\square
	·
	<u> </u>

VALL-E*	9.93	13.91
VALL-E X^{\dagger}	36.11	33.33
$SpeechX^{\dagger}$	33.33	25.00

Equal error rate for traditional TTS systems: less than 2%

Solution: Train on speech re-synthesized data by codecs

We assume codec resynthesized data shares similarities with CodecFake data. \rightarrow Gather codec resynthesized data to train anti-spoofing models.

CodecFake: Dataset Creation

1. Divide VCTK corpus into 3 speaker-disjoint subsets

	# utter	# utterances/ # speakers							
	Training	Validation	Testing						
Dataset General	tion								
CodecFake	42752 / 103	735/2	755/2						
VCTK	42752 / 103	735/2	755/2						

2. Re-synthesize speech with 15 audio codecs from 6 frameworks

CodecFake: Dataset Creation (cont.)

3. Use each codec to encode VCTK utterances into discrete codes, then re-synthesize codes back into speech.

Solution: Train on speech re-synthesized by codecs

Detecting Speech from Codec-based TTS Systems

Y-axis: detection equal error rate for VALL-E generated data X-axis: training subset

The next step - source tracing

(b) Anti-spoofing model trained on CodecFake dataset

Source tracing offers potential to improve generalization to spoofing attacks that are unseen during training but are composed of blocks encountered in training.

Summary with papers allowed hered he

The first neural audio codec benchmark

[1] <u>Wu, H.</u>, Chung, H. L., Lin, Y. C., Wu, Y. K., Chen, X., Pai, Y. C., ... & Lee, H. Y. (2024). Codec-superb: An in-depth analysis of sound codec models. ACL findings 2024

[2] Shi, J., Tian, J., Wu, Y., Jung, J. W., Yip, J. Q., Masuyama, Y., ... & Watanabe, S. (2024). Espnet-codec: Comprehensive training and evaluation of neural codecs for audio, music, and speech. SLT 2024

[3] <u>Wu, H.</u>, Chen, X., Lin, Y. C., Chang, K., Du, J., Lu, K. H., ... & Lee, H. Y. (2024). Codec-SUPERB@ SLT 2024: A lightweight benchmark for neural audio codec models. SLT 2024

[4] Shi, J., et al. "VERSA: A Versatile Evaluation Toolkit for Speech, Audio, and Music." arXiv preprint arXiv:2412.17667 (2024).

Modeling

The first Transformer-only codec

[5] <u>Wu, H.</u>, Kanda, N., Eskimez, S. E., & Li, J. (2024). TS3-Codec: Transformer-Based Simple Streaming Single Codec. arXiv preprint arXiv:2411.18803.

[6] <u>Wu, H.</u>, Tseng, Y., & Lee, H. Y. (2024). CodecFake: Enhancing Anti-Spoofing Models Against Deepfake Audios from Codec-Based Speech Synthesis Systems. Interspeech 2024

Codec-SUPERB SLT' 24 special session

- The challenge covers nowday's neural audio codecs and speech / audio language models.
 - Time: December 3 15:00-18:30
 - Detailed agenda: <u>https://codecsuperb.github.io/</u>
- Keynote speakers
 - Neil Zeghidour (Moshi): 15:15-16:00
 - slides | recording
 - Title: Audio Language Models
 - · Dongchao Yang (CUHK): 16:00-16:35
 - slides | recording
 - Title: Challenges in Developing Universal Audio Foundation Model
 - o Shang-Wen Li (Meta): 16:35-17:10
 - slides | recording
 - Title: VoiceCraft: Zero-Shot Speech Editing and TTS in the Wild
 - Wenwu Wang (University of Surrey): 17:40-18:15
 - slides | recording
 - Title: Neural Audio Codecs: Recent Progress and a Case Study with SemantiCodec
 - Minje Kim (UIUC): 18:15-18:50
 - <u>slides</u> | recording
 - Title: Future Directions in Neural Speech Communication Codecs
- Host
 - Hung-yi Lee (NTU)
 - Haibin Wu (Microsoft)
- Accepted papers
 - $\circ\,$ ESPnet-Codec: Comprehensive Training and Evaluation of Neural Codecs for Audio, Music, and Speech
 - Codec-SUPERB @ SLT 2024: A lightweight benchmark for neural audio codec models
 - $\circ~$ Investigating neural audio codecs for speech language model-based speech generation
 - Addressing Index Collapse of Large-Codebook Speech Tokenizer with Dual-Decoding Product-Quantized Variational Auto-Encoder
 - MDCTCodec: A Lightweight MDCT-based Neural Audio Codec towards High Sampling Rate and Low Bitrate Scenarios