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Increasingly powerful speech models promise
“universal” speech processing
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Robust Speech Recognition via Large-ScaleWeak Supervision 7

Figure 3. Correlation of pre-training supervision amount with
downstream speech recognition per formance. The amount of
pre-training speech recognition data for agiven language is very
predictiveof zero-shot performance on that language in Fleurs.

Model MLS VoxPopuli

VP-10K + FT - 15.3
XLS-R (1B) 10.9 10.6
mSLAM-CTC (2B) 9.7 9.1
Maestro - 8.1

Zero-Shot Whisper 7.3 13.6

Table3.Multilingual speech recognition per formance. Zero-
shot Whisper improvesperformance on Multilingual LibriSpeech
(MLS) but is still significantly behind both Maestro, XLS-R, and
mSLAM on VoxPopuli.

et al., 2022), andMaestro (Chen et al., 2022b) in azero-shot
setting. Wecaution that wedo useasimple text standardizer
for this result which prevents direct comparison or claims
of SOTA performance. On VoxPopuli, however, Whisper
significantly underperforms prior work and only beats the
VP-10K+FT baseline from theoriginal paper. Wesuspect
the underperformance of Whisper models on VoxPopuli
could bedue to other models including this distribution as
amajor source for their unsupervised pre-training data and
thedataset having significantly moresupervised data, which
benefits fine-tuning. WhileMLS has 10 hours of training
dataper language, theaverageamount of training dataper
language is roughly 10⇥ higher for VoxPopuli.

These two benchmarks are somewhat narrow since they
only include15 unique languages, almost all of which are in

Figure 4. Correlation of pre-training supervision amount with
downstream translation per formance. The amount of pre-
training translation data for a given language is only moderately
predictive of Whisper’s zero-shot performance on that language in
Fleurs.

the Indo-European language family andmany of which are
high-resource languages. Thesebenchmarksonly provide
limited coverageand room to study Whisper modelsmulti-
lingual capabilities which include training data for speech
recognition in 75 languages. To study the performance of
Whisper more broadly wealso report performance on the
Fleurs dataset (Conneau et al., 2022). In particular, wewere
interested in studying the relationship between theamount
of training datawehave for agiven languageand the result-
ing downstream zero-shot performance for that language.
We visualize this relation in Figure 3. We find a strong
squared correlation coefficient of 0.83 between the log of
the word error rate and the log of the amount of training
dataper language. Checking the regression coefficient for a
linear fit to these log-log values results in an estimate that
WER halves for every 16⇥ increase in training data. We
also observed that many of the largest outliers in termsof
worse than expected performanceaccording to this trend are
languages that have unique scripts and aremore distantly
related to the Indo-European languagesmaking up thema-
jority of the training dataset such asHebrew (HE), Telugu
(TE), Chinese (ZH), and Korean (KO). These differences
could bedue to a lack of transfer due to linguistic distance,
our byte level BPE tokenizer being apoor match for these
languages, or variations in data quality.

“Whisper’s speech recognition performance is
 still quite poor on many languages.”
(Radford et al. 2023)
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Addressing this challenge could improve the digital participation of 
many speakers worldwide
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What do we need?

Better ways to reliably measure speech recognition model performance
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What do we need?

Better ways to reliably measure speech recognition model performance

New algorithms for bridging the performance gap between languages
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Abstract
ML-SUPERB evaluates self-supervised learning (SSL) models
on the tasks of language identification and automatic speech
recognition (ASR). This benchmark treats the models as fea-
ture extractors and uses a single shallow downstream model,
which can be fine-tuned for a downstream task. However, real-
world use cases may require different configurations. This
paper presents ML-SUPERB 2.0, which is a new benchmark
for evaluating pre-trained SSL and supervised speech models
across downstream models, fine-tuning setups, and efficient
model adaptation approaches. We find performance improve-
ments over the setup of ML-SUPERB. However, performance
depends on the downstream model design. Also, we find large
performance differences between languages and datasets, sug-
gesting the need for more targeted approaches to improvemul-
tilingual ASR performance.
Index Terms: self-supervised learning, efficient fine-tuning,
model adaptation, multilingual speech recognition, benchmarks

1. Introduction
Modern multilingual speech models have thecapacity to model
hundreds or, in some cases, over a thousand languages [1–9],
enabled by different training objectives, model architectures,
and sources of training data. Importantly, the performance of
thesemodels isoften evaluated using different experimental se-
tups, which limits the extent to which their performance can be
reliably compared. Several standardized evaluation setups and
benchmarks havebeen proposed to evaluate theperformance of
pre-trained multilingual speech models [10–12].

The most comprehensive benchmark in terms of language
coverage is the Multilingual Speech Universal PERformance
Benchmark (ML-SUPERB) [13], which covers 143 languages
and includes multiple downstream tasks: monolingual ASR,
multilingual ASR, and language identification (LID). Like the
original SUPERB [14], which only considers English speech,
ML-SUPERB is set up to evaluate the performance of self-
supervised learning (SSL) models. Thisevaluation isperformed
by freezing their representations and treating themodels as fea-
tureextractors. These featuresareused as input to a lightweight
downstream model, which can be fine-tuned for any of the
downstream tasks. To minimize the impact of the downstream
model on theoverall measured performance, asimple two-layer
Transformer-based decoder is used. ML-SUPERB was pre-
sented as a challenge at ASRU 2023, attracting 12 model sub-
missions and 8 new language submissions [15–25].

Although the design of ML-SUPERB allows for efficient
evaluation of multilingual SSL models across a large number

* Equal contribution.

of languages, it only considers onefixed downstreammodel de-
sign. This isproblematic, aspast work hasfound that thechoice
of downstream model can affect the rankings of SSL models
across downstream tasks [26, 27]. Also, the choice of down-
stream model designs can be affected by application require-
ments and users’ budgets, which further motivates benchmark-
ing with more flexible constraints.

In this paper, we present ML-SUPERB 2.0, which re-
visits ML-SUPERB’s original design. Specifically, ML-
SUPERB 2.0 includes larger-scale downstream models, SSL
model fine-tuning (including partial fine-tuning strategies), ef-
ficient pre-trained model adaptation techniques (adapters [28]
and LoRA [29]), and supervised pre-trained models (Whis-
per [3] and OWSM 3.1 [30]). Also, we enrich ML-SUPERB’s
evaluation metrics to place greater focus on robustness across
languages and describe variation across datasets. All code and
data used to develop ML-SUPERB 2.0 are publicly available.1

2. Investigation Details
ML-SUPERB 2.0 considersavariety of architectural variations,
pre-training and fine-tuning approaches, described in the next
four sections. We then discuss the changes in the evaluation
metrics, which allow us to investigate performance differences
across languages and datasets.

2.1. Downstream Architectures

Past work has found ASR performance differences between
downstream architectures when comparing representations
from pre-trained SSL models [26, 31]. These findings moti-
vate a systematic comparison to better understand their impact
on ASR performance. Therefore, ML-SUPERB 2.0 considers
both CTC-based (CTC) and hybrid CTC/attention-based (CTC-
ATT) frameworks as adopted in [26, 32–34], and within each
framework, compares three architectures, namely the Trans-
former [35], Conformer [36], and E-Branchformer [37]. In pre-
liminary experiments, we compared these architectures to oth-
ers (e.g., bi-LSTMs, transducers), and these three were chosen
for their better performance or faster convergence.

2.2. Model Fine-Tuning

Fine-tuning is a common practice to adapt pre-trained SSL
models to a downstream task. While fine-tuning is effective,
it traditionally requires updating all model parameters, which
is costly. Partial fine-tuning is an alternative that strikes a
balance between training efficiency and performance [38, 39].
ML-SUPERB 2.0 includes fine-tuning for the CTC/CTC-ATT

1ht t ps: / / gi t hub. com/ espnet / espnet / t r ee/
mast er / egs2/ ml _super b/ asr 1

Interspeech 2024
1-5 September 2024, Kos, Greece

1230 10.21437/Interspeech.2024-2248

Evaluating



1010

Background: Multilingual Speech Processing Benchmark

• Recent multilingual speech processing models 

• Have the capacity to model hundreds of languages

Evaluating



1111

Background: Multilingual Speech Processing Benchmark

• Recent multilingual speech processing models

• Have the capacity to model hundreds of languages

• However, they are often evaluated using different setups, which limits the 
extent to which they can be reliably compared

Evaluating
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Background: Multilingual Speech Processing Benchmark

• Recent multilingual speech processing models

• Have the capacity to model hundreds of languages

• However, they are often evaluated using different setups, which limits the 
extent to which they can be reliably compared

→This motivates the need for multilingual speech processing benchmarks

Evaluating
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Background: 
Multilingual Speech 
Processing Benchmark

We observe great efforts in the 
community on spoken multilingual 
benchmarks:

• XTREME-S (Conneau et al. 2022)

• IndicSUPERB (Javed et al. 2023)

• ML-SUPERB (Shi et al. 2023)

Evaluating
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Background: Multilingual Speech Processing Benchmark

• We observe great efforts in the community on spoken multilingual benchmarks:
• XTREME-S (Conneau et al. 2022)
• IndicSUPERB (Javed et al. 2023)
• ML-SUPERB (Shi et al. 2023)

• ML-SUPERB is the most comprehensive benchmark in terms of language coverage, 
as it includes 143 languages and it evaluates models on:
• Monolingual/multilingual automatic speech recognition (ASR)
• Language identification (LID)
• Joint ASR + LID

Evaluating
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Limitations of ML-SUPERB

• Strictly constrained benchmark settings with self-supervised learning 
(SSL) pre-trained models

• Efficient yet not generalizable enough to various settings (Zaiem et al. 2023; 
Arora et al. 2024)

• Does not take application requirements or users’ budgets into account

• This motivates benchmarking with more flexible constraints

Evaluating
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Limitations of ML-SUPERB

• Evaluation metric does not provide insight into performance 
variations between individual languages and datasets

• This motivates changes to the evaluation metrics to place greater 
focus on robustness across languages and datasets

Evaluating
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Introduction of ML-SUPERB 2.0

• We revisit ML-SUPERB:

• By relaxing its fixed constraints

• By improving fairness in its evaluation metrics to focus on robustness across 
languages and variation across datasets

Evaluating
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Experimental Design (General Setup)

• ML-SUPERB 2.0 evaluates joint multilingual LID/ASR

• We updated the ML-SUPERB dataset by correcting some mistakes*

• Some statistics:
• 141 languages across 15 datasets
• Around 300 hours in total (with 85 hours for validation + test sets)
• We follow the 1-hour configuration presented in ML-SUPERB
• 20 languages are reserved for few-shot learning experiments, each using 5 

utterances for training
* Please refer to our paper for details about the updates to the dataset

Evaluating
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Experimental Design (General Setup)

• Experimental codebases:
• ESPnet (Watanabe et al. 2018)
• S3PRL (Yang et al. 2021)

• Selected pre-trained self-supervised models:
• XLS-R (Babu et al. 2022)
• MMS (Pratap et al. 2024)

• In line with the original ML-SUPERB: 
• Limit the number of tunable parameters to 100 million

Evaluating
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Experimental Design (General Setup)

• Specifically, we investigate four new benchmark configurations:

• Larger-scale downstream models

• SSL model fine-tuning

• Efficient model adaptation strategies

• Supervised pre-trained models

Evaluating
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Larger-scale downstream models

Evaluating

Pre-trained model

Weighted sum

CTC framework CTC-ATT framework

Transformer encoder (15 layers)
Transformer decoder (8 layers)

Conformer encoder (15 layers)
Transformer decoder (8 layers)

E-Branchformer encoder (15 layers)
Transformer decoder (8 layers)

Transformer encoder (15 layers)

Conformer encoder (15 layers)

E-Branchformer encoder (15 layers)

LID + transcript
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SSL model fine-tuning

Evaluating

CTC framework CTC-ATT framework

Transformer encoder (2 layers)
Transformer decoder (4 layers)Transformer encoder (2 layers)

LID + transcript

Pre-trained model

Weighted sum

Top layers (19-24)
Middle layers (9-14)
Bottom layers (1-6)
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Efficient model adaptation strategies

Evaluating

CTC framework CTC-ATT framework

Transformer encoder (2 layers)
Transformer decoder (4 layers)Transformer encoder (2 layers)

LID + transcript

Pre-trained model

Weighted sum

Adapters
LoRA
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Supervised pre-trained models

Evaluating

CTC framework CTC-ATT framework

Transformer encoder (2 layers)

LID + transcript

Whisper / OWSM 3.1 (medium) 
encoder

Weighted sum

Also with top layers (19-24)
Whisper / OWSM 3.1 (medium) 

encoder + decoder

Top layers decoder (19-24)
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Experimental Design (Configuration Setup)

• For the four benchmark configurations:

• Hyperparameters follow prior works*

• We tune the learning rate and select the best-performing model on the 
validation set

* Please refer to our paper for the complete list of prior works we refer to.

Evaluating
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Experimental Design (Evaluation)
• Base metrics:

• Accuracy for LID
• Character error rate (CER) for ASR on two sets (normal and few-shot setting)

Evaluating
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Experimental Design (Evaluation)
• Place greater focus on measuring robustness:

• Macro-average over languages/datasets instead of micro-average CER
• Compute per-language CER as the macro-average of CERs across all datasets per 

language
• Compute the macro-average of the per-language CERs
→ Allows to better understand variation between languages and datasets
→ Languages with more samples do not disproportionally affect the CER

• Standard deviation of language-specific CERs
• Measure CER of the worst-performing language
• Measure CER range between datasets in the same language

Evaluating
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Experimental Results and Discussions
• Effect of introducing four benchmark configurations

• Model ranking for the benchmark configurations

• Supervised ASR versus SSL pre-trained models

• Variation across languages and datasets 

Due to the time limits, we present part of results in the presentation. Please refer to our paper for the full details.

Evaluating
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Effect of Introducing Four Configurations
Configurations Details Accuracy CER (Normal)

Original ML-SUPERB MMS + Transformer CTC 90.3 24.7 ± 12.3

Larger Downstream MMS + E-Branchformer ATT-CTC 95.2 16.6 ± 11.8

SSL Model Fine-tuning MMS + 9-14 layers partial fine-tuning CTC 95.6 15.5 ± 10.3

Efficient Model Adaptation MMS + LoRA + Transformer ATT-CTC 94.2 18.7 ± 11.5

Supervised Pre-trained Model Whisper Encoder + Transformer CTC 91.7 21.0 ± 12.5

Compared to the original ML-SUPERB, we observe better performance for LID 
and ASR across ALL configurations (normal setting) 

Evaluating
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Model Ranking given Different Configurations

• ML-SUPERB 2.0 is a better estimate of
model performance compared to the
original ML-SUPERB

• However, when considering different training settings, the ranking of 
upstream models can be different

Evaluating
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Model Ranking given Different Configurations 
(Larger-scale Downstream Models)

MMS winsXLS-R wins

Transformer Conformer E-Branchformer

CTC XLS-R MMS XLS-R
ATT-CTC MMS MMS MMS

Compared to the original ML-SUPERB, the performance of XLS-R and MMS 
depends on the choice of the downstream model

Evaluating
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Model Ranking given Different Configurations 
(Model Fine-tuning)

MMS winsXLS-R wins

Bottom Middle Top

CTC MMS MMS MMS
ATT-CTC MMS MMS MMS

Compared to the downstream model configuration,
XLS-R and MMS rank differently when considering fine-tuning approaches

Evaluating
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Model Ranking given Different Configurations 
(Efficient Model Adaptation)

MMS winsXLS-R wins

LoRA Adapter

CTC XLS-R XLS-R
ATT-CTC MMS XLS-R

Compared to previous experimental settings,
XLS-R and MMS rank differently when considering efficient model 
adaptation approaches

Evaluating
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Supervised ASR vs. SSL Pre-trained Models

• Original ML-SUPERB only focuses on SSL pre-trained models

• ML-SUPERB 2.0 also allows the use of supervised ASR models
• As long as the test sets from the ML-SUPERB 2.0 dataset are not used in 

training

• In our paper, we introduce some preliminary analysis on the 
comparison between supervised ASR and SSL pre-trained models

Evaluating
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Supervised ASR vs. SSL Pre-trained Models
Pre-trained Model (Module) Downstream Learning Modules Accuracy CER (Normal)

XLS-R Additional transformer encoder + CTC prediction head 93.7 20.7 ± 10.8

MMS Additional transformer encoder + CTC prediction head 93.6 21.0 ± 11.2

Whisper Encoder Additional transformer encoder + CTC prediction head 91.7 21.0 ± 12.5

Whisper Encoder Partial parameters in Whisper encoder (top layers) and 
additional transformer encoder + CTC prediction head 83.9 26.8 ± 15.0 

Whisper Encoder + Decoder Partial parameters in Whisper decoder (top layers) 85.5 25.6 ± 19.4

In our experiments, SSL pre-trained models demonstrate slightly superior 
performance compared to supervised ASR pre-trained models

Evaluating
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Variation across Languages and Datasets 

• Large standard deviations in both normal and few shot settings
→ This shows that there is substantial variation among the language-specific 
CERs

Evaluating
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Variations across Languages and Datasets 

• Large standard deviations in both the normal and few-shot settings
→ This shows that there is substantial variation among the language-specific 
CERs

• The impact of language differences is also highlighted by the CER of 
the worst-performing languages
• In most cases, Lao or Min Nan Chinese have a CER > 60%

Evaluating
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Variations across Languages and Datasets 

• Large standard deviations in both the normal and few-shot settings
→ This shows that there is substantial variation among language-specific CERs

• The large impact of language differences is also highlighted by the 
CER of the worst-performing languages
• In most cases, Lao or Min Nan Chinese have a CER > 60%

• Large CER differences between datasets in the same language
→ This highlights the impact of domain or acoustic differences

Evaluating
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Conclusion of ML-SUPERB 2.0

• We present an updated benchmark for multilingual speech pre-
trained models, which builds upon ML-SUPERB

• We investigate four configurations that ML-SUPERB does not 
consider

• We introduce a broader set of evaluation metrics to measure 
variation across languages and datasets

Evaluating
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Findings of ML-SUPERB 2.0

• All four configurations show improvements over the configuration used in 
the original ML-SUPERB, which was likely underestimating model 
performance

• Model ranking depends on the configuration of the benchmark

• There is no single way to evaluate an SSL model. It must always be measured 
in the context of a specific downstream model and task

• We encourage research on methods that improve language/dataset 
robustness

Evaluating
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Can we develop robust optimization methods to address the performance gap?
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Standard approach: ERM

• Minimize the average loss on the training data

Improving
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Standard approach: ERM

• Minimize the average loss on the training data

SCO R E

ER
RO

R

Average Worst group

Improving
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Desired approach
ER

RO
R

Average Worst group

ER
RO

R

Average Worst group

Improving
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Improving
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ER
RO

R

Average Worst group

Group Distributionally Robust Optimization

Minimize the worst-case expected loss over
a set of pre-defined groups

Improving
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Group DRO shows strong performance on image and text classification tasks
but has not yet been successfully applied to speech
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In practice

The training objective 
maintains a weight for each 
group, which are uniformly 
initialized and updated 
during training.

Improving
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In practice

Compute the average 
training loss for each group 
in a batch and compute an 
exponential multiplicative 
update to the group weight 
vector.

Improving
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In practice

Normalize the group weight 
vector to form a valid 
probability distribution.

Improving
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In practice

The loss used in the gradient 
descent update for the batch 
is then the sum of the group 
losses weighed by the group 
weights.

Improving
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Challenges

Best-performing models on ML-SUPERB 2.0 are fine-tuned using CTC

Improving
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Challenges

Best-performing models on ML-SUPERB 2.0 are fine-tuned using CTC

Challenges optimizing CTC loss using group DRO

Improving
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Challenges

Best-performing models on ML-SUPERB 2.0 are fine-tuned using CTC

Challenges optimizing CTC loss using group DRO

 Group DRO is restricted to applications where the losses between groups
in the training data are comparable

Improving
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Challenges

CTC loss scales with the length of the audio samples and
the length of the corresponding transcriptions 

Improving
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Challenges

CTC loss scales with the length of the audio samples and
the length of the corresponding transcriptions 

Improving
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Challenges

Even when length differences would be taken into account,
group losses might still not be comparable

Audio samples can be from different speakers or domains

This may lead to consistently higher or 
effectively irreducible losses for some groups

Improving
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Challenges

Improving
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Challenges

Improving

Focus on this group, 
leading to undertraining of group 1 and 2
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To address these limitations we present CTC-DRO

Improving
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To address these limitations we present CTC-DRO

Duration-matched group losses

Improving
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To address these limitations we present CTC-DRO

Group-based regularization

Duration-matched group losses

Improving
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Duration-matched group losses

To deal with the scaling 
properties of the CTC loss, 
we batch the same total 

duration of audio data for 
each group.

Improving
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Instead of averaging losses within a 
batch, we sum them. This prevents 
artificially low or high averages for 

batches with many short utterances 
or few long ones. Since each batch 

has the same total duration, the 
sums remain comparable across 

groups.

Duration-matched group losses

Improving
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Duration-matched group losses

Updates are done only after 
seeing all of the groups, 
simulating a larger batch 

containing all of the groups.

Improving
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Group-based regularization

We perform softer updates to 
the group weights qg, which are 
now inversely proportional to 

the current qg as well as 
proportional to the training loss.

Improving
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Discourages groups 
from attaining very high 
qg, mitigating group 
dro's issues with varying 
irreducibility of losses 
across groups

Group-based regularization

Improving
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Ensures groups with 
lower qg receive larger 
updates when CTC 
losses are similar, 
helping them catch up 
during training

Group-based regularization

Improving
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Prevents under-training 
by reducing divergence 
in DRO weights across 
groups

Group-based regularization

Improving
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Higher values of the 
new hyperparameter α 
reduce the strength of 
this effect

Group-based regularization

Improving
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We multiply losses by the number of 
groups, which improves training 
stability. This way, losses are also 

comparable to models trained 
without CTC-DRO, removing the 

need to tune hyperparameters for 
both models.

Improving
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We accumulate gradients across 
16 batches before updating 

model parameters, simulating 
larger batches with multiple 

groups.

Improving
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Experimental setup

Improving
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Experimental setup

• MMS and XLS-R fine-tuned with and without CTC-DRO and with group DRO
• Groups in algorithm correspond to individual languages in training datasets

Improving
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Experimental setup

• Two-layer Transformer encoder added on top of pre-trained models 
to predict characters using CTC

• All model weights updated during fine-tuning
• Learning rate tuned on development data 

• DRO models use same learning rate as baseline (i.e., non-DRO) models for 
clear comparison

• DRO-specific hyperparameters:
• Step size ηq: 10-3 and 10-4

• Smoothing parameter α: 0.1, 0.5, and 1

Improving
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Dataset: following ML-SUPERB 2.0

Improving
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Results

Improving
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Results

Improving
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Results

Improving
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Results

Improving
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Results

Improving
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Analysis: group DRO
Weights fluctuate. During 
large portions of training, all 
of the DRO weight is 
concentrated on a single 
language, which is not the 
worst-performing language

Improving
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Analysis: CTC-DRO

Weights fluctuate less, 
mitigating undertraining of any 
language. The worst-performing 
language has one of the largest 
weights.

Improving
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Analysis: group DRO
Weights fluctuate. During 
large portions of training, all 
of the DRO weight is 
concentrated on a single 
language, which is not the 
worst-performing language

Improving
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Analysis: CTC-DRO

Weights are grouped much 
more tightly, mitigating 
undertraining of any language. 
The worst-performing language 
has one of the largest weights.

Improving



9292

Analysis

Improving
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Conclusion of CTC-DRO

• We find that CTC-DRO consistently reduced the worst-language CER 
and improved the average CER in most cases

• Future work will include different models, scale-up the number of 
languages, and handle multi-dimensional group definitions (e.g., 
language, gender, age)

Images are generated by DALL-E or directly from Flaticon.com 

Improving
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Conclusions

ML-SUPERB 2.0 provides a way to reliably measure
speech recognition model performance

CTC-DRO reduces the performance gap between languages to help 
improve universal access to modern speech technology
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