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Increasingly powerful speech models promise
“universal” speech processing



Robust Speech Recognition via Large-Scale Weak Supervision

Alec Radford”! Jong Wook Kim“! Tao Xu' Greg Brockman' Christine McLeavey' Ilya Sutskever
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Scaling Speech Technology to 1,000+ Languages

Vineel Pratap® Andros Tjandra®* Bowen Shi* Paden Tomasello
Arun Babu Sayani Kundu' Ali Elkahky! Zhaoheng Ni

Apoorv Vyas Maryam Fazel-Zarandi Alexei Baevski  Yossi Adi
Xiaohui Zhang Wei-Ning Hsu Alexis Conneau®! Michael Auli*

Whisper Whisper MMS MMS MMS MMS MMS MMS MMS MMS

medium large-v2 L-61 L-61 L-61 L-61 L-1107 L-1107 L-1107 L-1107

noLM CC LM noLM CC LM noLM CC LM noLM CC LM

LSAH LSAH LSAH LSAH

Amharic 229.3 140.3 48.7 30.7 52.4 32.5 52.9 30.1 53.3 31.1
Arabic 20.4 16.0 34.9 19.6 35.8 19.9 44.0 23.4 41.3 21.0
Assamese 102.3 106.2 29.5 18.8 28.4 18.6 37.6 21.2 30.5 19.2
Azerbaijani 33.1 23.4 40.7 21.3 38.3 19.8 45.0 21.2 40.1 19.1
Bengali 100.6 104.1 19.7 11.6 20.0 12.1 25.0 12.5 23.5 12.1
Bulgarian 21.4 14.6 23.4 13.1 23.9 13.3 27.9 12.9 25.5 13.5
Burmese 123.0 115.7 22.2 14.2 22.3 14.5 29.2 20.2 24.5 16.0
Catalan 9.6 7.3 18.1 11.0 18.1 11.0 25.9 11.5 20.1 10.8
Dutch 9.9 6.7 26.9 13.7 26.4 14.3 38.1 14.9 27.6 14.5



Addressing this challenge could improve the digital participation of
many speakers worldwide



What do we need?

od

5 Better ways to reliably measure speech recognition model performance



What do we need?

E.; Better ways to reliably measure speech recognition model performance

:'E New algorithms for bridging the performance gap between languages



Evaluating

Interspeech 2024
1-5 September 2024, Kos, Greece

ML-SUPERB 2.0: Benchmarking Multilingual Speech Models
Across Modeling Constraints, Languages, and Datasets

Jiatong Shi', Shih-Heng Wang®*, William Chen"*, Martijn Bartelds>*, Vlanya Bannihatti Kumar’,
Jinchuan Tian', Xuankai Chang', Dan Jurafsky?®, Karen Livescu®*, Hung-yi Le€?, Shinji Watanabe'

! Carnegie Méellon University, ? National Taiwan University, 3 Stanford University,
4 Toyota Technological Institute at Chicago
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Background: Multilingual Speech Processing Benchmark

* Recent multilingual speech processing models

* Have the capacity to model hundreds of languages
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Background: Multilingual Speech Processing Benchmark

* Recent multilingual speech processing models

* Have the capacity to model hundreds of languages

* However, they are often evaluated using different setups, which limits the
extent to which they can be reliably compared
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Evaluating

Background: Multilingual Speech Processing Benchmark

* Recent multilingual speech processing models

* Have the capacity to model hundreds of languages

* However, they are often evaluated using different setups, which limits the
extent to which they can be reliably compared

—>This motivates the need for multilingual speech processing benchmarks
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Evaluating

Background:
Multilingual Speech
Processing Benchmark

We observe great efforts in the
community on spoken multilingual
benchmarks:

* XTREME-S (Conneau et al. 2022)
* IndicSUPERB (Javed et al. 2023)
* ML-SUPERB (Shi et al. 2023)
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Evaluating

Background: Multilingual Speech Processing Benchmark

* We observe great efforts in the community on spoken multilingual benchmarks:
* XTREME-S (Conneau et al. 2022)
* IndicSUPERB (Javed et al. 2023)
« ML-SUPERB (Shi et al. 2023)

* ML-SUPERB is the most comprehensive benchmark in terms of language coverage,
asitincludes 143 languages and it evaluates models on:

* Monolingual/multilingual automatic speech recognition (ASR)

* Language identification (LID) "l” S U P E R B

* Joint ASR+LID
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Evaluating

Limitations of ML-SUPERB

e Strictly constrained benchmark settings with self-supervised learning
(SSL) pre-trained models

* Efficient yet not generalizable enough to various settings (Zaiem et al. 2023;
Arora et al. 2024)

* Does not take application requirements or users’ budgets into account

* This motivates benchmarking with more flexible constraints

15



Evaluating

Limitations of ML-SUPERB

 Evaluation metric does not provide insight into performance
variations between individual languages and datasets

* This motivates changes to the evaluation metrics to place greater
focus on robustness across languages and datasets

16



Evaluating

Introduction of ML-SUPERB 2.0

* We revisit ML-SUPERB:
* By relaxing its fixed constraints

* By improving fairness in its evaluation metrics to focus on robustness across
languages and variation across datasets

17



Evaluating

Experimental Design (General Setup)

* ML-SUPERB 2.0 evaluates joint multilingual LID/ASR

* We updated the ML-SUPERB dataset by correcting some mistakes*

* Some statistics:

* 141 languages across 15 datasets
* Around 300 hours in total (with 85 hours for validation + test sets)

* We follow the 1-hour configuration presented in ML-SUPERB

e 20 languages are reserved for few-shot learning experiments, each using 5
utterances for training

* Please refer to our paper for details about the updates to the dataset

18



Evaluating

Experimental Design (General Setup)

* Experimental codebases: m ESP“E‘

* ESPnet (Watanabe et al. 2018)
* S3PRL (Yang et al. 2021)

 Selected pre-trained self-supervised models:
« XLS-R (Babu et al. 2022)
 MMS (Pratap et al. 2024)

* In line with the original ML-SUPERB:

e Limit the number of tunable parameters to 100 million

19



Evaluating

Experimental Design (General Setup)

* Specifically, we investigate four new benchmark configurations:

* Larger-scale downstream models
e SSL model fine-tuning
 Efficient model adaptation strategies

e Supervised pre-trained models

20



Evaluating

Larger-scale downstream models

/ > LID + transcript €\

CTC framework CTC-ATT framework

[ Transformer encoder (15 layers) |

Transformer decoder (8 layers)
Transformer encoder (15 layers)

[ ]
[ ]
(— Conformer encoder (15 layers) ) { Transformer decoder (8 layers) %
[ ]
[ ]

Conformer encoder (15 layers)

Transformer decoder (8 layers)
E-Branchformer encoder (15 layers)

| E-Branchformer encoder (15 layers) |

’\— Weighted sum _]

Pre-trained model
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Evaluating

SSL model fine-tuning

/ > LID + transcript €\

CTC-ATT framework

| Transformer decoder (4 layers) |
| Transformer encoder (2 layers) |

K— Weighted sum .j\

Top layers (19-24)
Middle layers (9-14)
Bottom layers (1-6)

l Transformer encoder (2 layers) ]

Pre-trained model
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Evaluating

Efficient model adaptation strategies

/ > LID + transcript 6\

CTC-ATT framework

] | Transformer decoder (4 layers) |
| Transformer encoder (2 layers) |

K— Weighted sum .j\

Adapters
LoRA
Pre-trained model

l Transformer encoder (2 layers)
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Evaluating

Supervised pre-trained models

/-)

[ Transformer encoder (2 layers) ]

LID + transcript

|

Weighted sum

6\

CTC-ATT framework

Also with top layers (19-24)

Top layers decoder (19-24)

Whisper / OWSM 3.1 (medium)
encoder

Whisper / OWSM 3.1 (medium)

encoder + decoder
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Evaluating

Experimental Design (Configuration Setup)

* For the four benchmark configurations:

* Hyperparameters follow prior works*

* We tune the learning rate and select the best-performing model on the
validation set

* Please refer to our paper for the complete list of prior works we refer to.
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Evaluating

Experimental Design (Evaluation)
C

* Base metrics:
* Accuracy for LID
* Character error rate (CER) for ASR on two sets (normal and few-shot setting)

30



Evaluating

Experimental Design (Evaluation) @

* Place greater focus on measuring robustness: g

* Macro-average over languages/datasets instead of micro-average CER

* Compute per-language CER as the macro-average of CERs across all datasets per
language

* Compute the macro-average of the per-language CERs

— Allows to better understand variation between languages and datasets

- Languages with more samples do not disproportionally affect the CER

e Standard deviation of language-specific CERs
* Measure CER of the worst-performing language
* Measure CER range between datasets in the same language




Evaluating

Experimental Results and Discussions

* Effect of introducing four benchmark configurations
* Model ranking for the benchmark configurations
e Supervised ASR versus SSL pre-trained models

* Variation across languages and datasets

Dueto the time limits, we present part of results in the presentation. Please refer to our paper for the full details.

32



Evaluating

Effect of Introducing Four Configurations

Original ML-SUPERB MMS + Transformer CTC 247+123
Larger Downstream MMS + E-Branchformer ATT-CTC 95.2 16.6 +11.8
SSL Model Fine-tuning MMS + 9-14 layers partial fine-tuning CTC 95.6 15.5+10.3
Efficient Model Adaptation MMS + LoRA + Transformer ATT-CTC 94.2 18.7 +11.5
Supervised Pre-trained Model Whisper Encoder + Transformer CTC 91.7 21.0+12.5

Compared to the original ML-SUPERB, we observe better performance for LID
and ASR across ALL configurations (normal setting)

33



Evaluating

Model Ranking given Different Configurations

 ML-SUPERB 2.0 is a better estimate of @@@
model performance compared to the
original ML-SUPERB %

* However, when considering different training settings, the ranking of
upstream models can be different

34



Evaluating

Model Ranking given Different Configurations
(Larger-scale Downstream Models)

Transformer Conformer E-Branchformer
CTC XLS-R MMS XLS-R
ATT-CTC MMS MMS MMS
XLS-R wins MMS wins

348

Compared to the original ML-SUPERB, the performance of XLS-R and MMS
depends on the choice of the downstream model

35



Evaluating

Model Ranking given Different Configurations
(Model Fine-tuning)

Bottom Middle Top
CTC MMS MMS MMS
ATT-CTC MMS MMS MMS
XLS-R wins MMS wins

Compared to the downstream model configuration,

348

XLS-R and MMS rank differently when considering fine-tuning approaches
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Evaluating

Model Ranking given Different Configurations
(Efficient Model Adaptation)

LoRA Adapter
CTC XLS-R XLS-R
ATT-CTC MMS XLS-R
XLS-R wins MMS wins

Compared to previous experimental settings,
XLS-R and MMS rank differently when considering efficient model

adaptation approaches

348
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Evaluating

Supervised ASR vs. SSL Pre-trained Models

* Original ML-SUPERB only focuses on SSL pre-trained models

 ML-SUPERB 2.0 also allows the use of supervised ASR models

* As long as the test sets from the ML-SUPERB 2.0 dataset are not used in
training

* In our paper, we introduce some preliminary analysis on the
comparison between supervised ASR and SSL pre-trained models

38



Evaluating

Supervised ASR vs. SSL Pre-trained Models

XLS-R Additional transformer encoder + CTC prediction head 20.7 £10.8
MMS Additional transformer encoder + CTC prediction head 93.6 21.0+11.2
Whisper Encoder Additional transformer encoder + CTC prediction head 91.7 21.0+125

Partial parameters in Whisper encoder (top layers) and

. 26.8 + 15.
additional transformer encoder + CTC prediction head 83.9 6.8+15.0

Whisper Encoder

Whisper Encoder + Decoder Partial parameters in Whisper decoder (top layers) 85.5 25.6+19.4

In our experiments, SSL pre-trained models demonstrate slightly superior
performance compared to supervised ASR pre-trained models

39



Evaluating

Variation across Languages and Datasets

* Large standard deviations in both normal and few shot settings
- This shows that there is substantial variation among the language-specific

CERs & , =

(3
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Evaluating

Variations across Languages and Datasets

* Large standard deviations in both the normal and few-shot settings

- This shows that there is substantial variation among the language-specific
CERs

* The impact of language differences is also highlighted by the CER of
the worst-performing languages

* |n most cases, Lao or Min Nan Chinese have a CER > 60%
@;g@

42



Evaluating

Variations across Languages and Datasets

* Large standard deviations in both the normal and few-shot settings
- This shows that there is substantial variation among language-specific CERs

* The large impact of language differences is also highlighted by the
CER of the worst-performing languages
* In most cases, Lao or Min Nan Chinese have a CER > 60%

* Large CER differences between datasets in the same language
- This highlights the impact of domain or acoustic differences

43



Evaluating

\
Conclusion of ML-SUPERB 2.0 &oine

H
MARKING

* We present an updated benchmark for multilingual speech pre-
trained models, which builds upon ML-SUPERB

* We investigate four configurations that ML-SUPERB does not
consider

* We introduce a broader set of evaluation metrics to measure
variation across languages and datasets

45



Evaluating

Findings of ML-SUPERB 2.0 ﬂ%ﬁ

* All four configurations show improvements over the configuration used in
the original ML-SUPERB, which was likely underestimating model
performance

* Model ranking depends on the configuration of the benchmark

* There is no single way to evaluate an SSL model. It must always be measured
in the context of a specific downstream model and task

* We encourage research on methods that improve language/dataset
robustness

46



Can we develop robust optimization methods to address the performance gap?

47



Standard approach: ERM

* Minimize the average loss on the training data

Oerm := arg min B, 5 [€(6; (2, y))]

48



Improving

Standard approach: ERM

* Minimize the average loss on the training data

ERROR

SCORE

Average B Worst group

49



Improving

Desired approach

ERROR

B Average B Worst group

ERROR

B Average M Worst group

50



Improving

Published as a conference paper at ICLR 2020

DISTRIBUTIONALLY ROBUST NEURAL NETWORKS
FOR GROUP SHIFTS: ON THE IMPORTANCE OF
REGULARIZATION FOR WORST-CASE GENERALIZATION

Shiori Sagawa*
Stanford University
ssagawalcs.stanford.edu

Tatsunori B. Hashimoto
Microsoft
tahashim@microsoft.com

Pang Wei Koh*
Stanford University
pangweil@cs.stanford.edu

Percy Liang
Stanford University
pliang@cs.stanford.edu
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Improving

Group Distributionally Robust Optimization

S .
= Opro := argmin { s E . yp~p, L00;(2,y))] }
] Minimize the worst-case expected loss over

a set of pre-defined groups
Average B Worst group

52



Group DRO shows strong performance on image and text classification tasks
but has not yet been successfully applied to speech

53



Improving

In practice

Algorithm 1 Online optimization algorithm for group
DRO, 6 represents the model parameters.

1: Input: Step sizes n,.7y; loss function /; batch size B

2: Initialize 6(°} and {q,}

3: fort =1to7 do

4 B={(xi,yi9:) }F:1
5. forge Gdo
6: Ly 0;enty <0
7 fori =1to B do
8 if g, == g then
9: Lyt = 10UY; (@i, 1:)); entg+ =1
10: end if
11: end for
12: 'Cg — cﬁfg
13: q; — qgexp(nyLy)
14:  end for
15:  for g € G do
16: g < 44/ >, ¢y {normalize}
17:  end for
18: L+ deG qqLy
19: 6 =1 Ueqét)Vl:
20: end for

The training objective
maintains a weight for each
group, which are uniformly
initialized and updated
during training.

H

54



Improving

In practice

Algorithm 1 Online optimization algorithm for group
DRO, 6 represents the model parameters.

1: Input: Step sizes 1, 779; loss function /; batch size B
2: Initialize () and {q,}
3. fort =1to7 do

om“@m}

B = {(i,yi,9:) }2s \
for g € G do
Ly <+ 0;centy 0
fori =1to B do
if g, == g then
Lo+ =100Y; (24,5:)); enty+ = 1

10: end if
11: end for
12: 'Cg — cﬁfg
\& qy < qgexp(ngLy) j
14: end for
15:  for g € G do
16: g < 44/ >, ¢y {normalize}
17:  end for
18: L+ deG qqLy
19: 60 o= — gy
20: end for

Compute the average
training loss for each group
in a batch and compute an
exponential multiplicative
update to the group weight
vector.

H
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Improving

In practice

Algorithm 1 Online optimization algorithm for group
DRO, 6 represents the model parameters.

1: Input: Step sizes 1, 779; loss function /; batch size B
2: Initialize () and {q,}
3: fort =1to T do

4 B={(xi,yi9:) }F:1
5. forge Gdo
6: Ly <+ 0;centy 0
7 fori =1to B do
8 if g, == g then
9: Lyt = 10UY; (@i, 1:)); entg+ =1
10: end if
11: end for
12: 'Cg — cﬁfg
13: q; — qgexp(nyLy)
14: __end for
15:  for g € G do
16: g < 44/ >, ¢y {normalize}
T7. end ror
18: L+ deG qqLy
19: 60 o= — gy
20: end for

Normalize the group weight
vector to form a valid
probability distribution.

H
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Improving

In practice

Algorithm 1 Online optimization algorithm for group
DRO, 6 represents the model parameters.

1: Input: Step sizes 1, 779; loss function /; batch size B
2: Initialize () and {q,}
3: fort =1to T do

4 B={(xi,yi9:) }F:1
5. forge Gdo
6: Ly <+ 0;centy 0
7 fori =1to B do
8 if g, == g then
9: Lyt = 10UY; (@i, 1:)); entg+ =1
10: end if
11: end for
12: 'Cg — cﬁfg
13: q; — qgexp(nyLy)
14:  end for
15:  for g € G do
16: g < 44/ >, ¢y {normalize}
17:  end for
18: L+ deG qqLy
19: 90 « 9t _pve
20: end for

The loss used in the gradient
descent update for the batch
is then the sum of the group
losses weighed by the group
weights.

H
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Improving

Challenges

Best-performing models on ML-SUPERB 2.0 are fine-tuned using CTC
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Improving

Challenges

Best-performing models on ML-SUPERB 2.0 are fine-tuned using CTC

I Challenges optimizing CTC loss using group DRO
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Improving

Challenges

Best-performing models on ML-SUPERB 2.0 are fine-tuned using CTC
l Challenges optimizing CTC loss using group DRO

l Group DRO is restricted to applications where the losses between groups
in the training data are comparable

60



Improving

Challenges

CTC loss scales with the length of the audio samples and
the length of the corresponding transcriptions

61



Improving

Challenges

CTC loss scales with the length of the audio samples and
the length of the corresponding transcriptions
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Improving

Challenges

l Even when length differences would be taken into account,
group losses might still not be comparable

l Audio samples can be from different speakers or domains

l This may lead to consistently higher or
effectively irreducible losses for some groups

63



Improving

Challenges

Training Loss

Training Losses Across Groups (Group DRO)

10 1

\\

—e— Group 1
—o— Group 2
—e— Group 3

T T T T T

1 2 3 4 5
Iterations

Weight Updates Across Groups (Group DRO)

0.71

0.6

0.21

0.14

—e— Group 1
—o— Group 2
—e— Group 3

T T T T T

1 2 3 4 5
Iterations
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Improving

Cha”enges Focus on this group,

leading to undertraining of group 1 and 2

Training Losses Across Groups (Group DRO) / Weight Updates Across Groups (Group DRO)

101 w —e— Group 1
\ —o— Group 2
0.7 1

o 0 : —e— Group 3

0.6
8 4
0.5
wn
8 o
— —e— Group 1 E'
g‘ 6 —o— Group2 | 5, 0.4
£ —e— Group3 | ©
g =
0.3
4<
0.21
0.11
2 4
1 2 3 4 5 1 2 3 4 5
Iterations Iterations
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To address these limitations we present CTC-DRO
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Improving

To address these limitations we present CTC-DRO

@ Duration-matched group losses
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Improving

To address these limitations we present CTC-DRO

@ Duration-matched group losses
@ Group-based regularization

68



Improving

Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep-
resents the model parameters.

1:

Input: Step sizes 7, 179; smoothing parameter ov; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3. fort=1to7 do
b B ={(wi,909) )0
5. 2B duration(x;) = d
& 0, =001, (z;,y,)) for i = 1 to B,
7. grlosses[g] < gr_losses[g] U {Zil Ei}
8: if grlosses[g] # 0 Vg then
9: for each group g do
10: 7o Legrlosses[g] L
’ g |grdosses[g]|
Nqly
11: L q —
12: gr_losses[g] < 0
13: end for
14: for each group g do
9y
15: qq < -
Dy Ay
16: end for
17:  endif
18 ly=4; xqexm fori=1,..., B,
.1 5 -
190 L=—=—> "¢
BL 21:1 }
20: 0 9= — VL
21: end for

To deal with the scaling
properties of the CTC loss,
we batch the same total
duration of audio data for
each group.

Duration-matched group losses
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Improving

Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep-
resents the model parameters.

1: Input: Step sizes 7, 17¢; smoothing parameter «;; num-

ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3: fort =1toT do

4 B={(riyi )}
5. XB duration(x;) = d
6: fl = 6(9“’1); (Ii, yz)) fori=1to Bt
7. grlosses[g] < gr_losses[g] U {Zil Ei}
8: if grlosses[g] # 0 Vg then
9. for each oroup g do
10: 7 ZLEgr,losses[g] L
’ g |grdosses[g]|
Tlqtg
11: L q —
T ooy
12: gr_losses[g] < 0
13: end for
14: for each group g do
a
15: qq < -
Dy Ay
16: end for
17:  endif
18 ly=4; xqexm fori=1,..., B,
- 1 5 -~
190 L=—>"4
BL El:l }
20: 0 9= — VL
21: end for

Duration-matched group losses

Instead of averaging losses within a

batch, we sum them. This prevents

artificially low or high averages for

batches with many short utterances

or few long ones. Since each batch
has the same total duration, the
sums remain comparable across

groups.
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep-
resents the model parameters.

1:

Input: Step sizes 7, 19; smoothing parameter o; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,
Initialize 8, {g,} and gr_losses
fort =1to T do

B = {(xiyyiag)}iB:fl;

B duration(z;) = d

L; = 00D (x4, 1;)) for i = 1 to By

gr_losses|g] < gr_losses[g] U {Zil Ei}

A\'om#w“

if gr_losses[g] # () Vg then
for each group g do \
10: 7o Legrlosses[g] L
g |er_losses[g]|
1
11: Q5 < Qg X oXp (quTga)
12: gr_losses[g] < 0
13: end for
14: for each group g do
15: - =21
o zy’ qs,)’
16: end for
&7: end if j
137 ’;z‘*’(«i Qg XTI 10T = 1,0 Dy
- 1 —B, >
190 L= B Yot
200 00 9= _ v, L
21: end for

Duration-matched group losses

H

Updates are done only after
seeing all of the groups,
simulating a larger batch

containing all of the groups.
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep- G ro u p - b a S e d reg u | a r i Za t i O n

resents the model parameters.

1: Input: Step sizes 7, ne; smoothing parameter o;; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3: fort=1to 7 do
4 B={(z,y 9}
5. XB duration(x;) = d
6:  £; = L0V (25,;)) fori =1to B,
7. grlosses[g] < gr_losses[g] U {Zil Ei}
8: if grlosses[g] # 0 Vg then
9: fa h d
O We perform softer updates to
10: == . 0
! larlosseslqll - the group weights g,, which are
/ ! 77 - . .
1 Gy < dg X exp (ﬁ) now inversely proportional to
= SCIOSSESIOT 0 the current g, as well as
13: end for . g o
14: for each group g do proportional to the training loss.
15: gy ="+
Yy dy
16: end for
17:  endif
18 ly=4; xqexm fori=1,..., B, H
10 f= L yE g,

E - |
20 00— 9D _ v, L
21: end for “
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep- G ro u p - b a S e d reg u | a r i Za t i O n

resents the model parameters.

1: Input: Step sizes 7, 17¢; smoothing parameter «;; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses

3: fort =1toT do

4 B={(@ny o)}l

50 X7 duration(x;) = d .

6 € =000 (2;,y:)) fori = 1to B, Discou rages groups

7. grlosses[g] < gr_losses[g] U {Zf;l Ei} f - h . h

8: if grlosses[g] # 0 Vg then rom attaini ng ve ry Ig

9: for each group g do oy s .

M i g, mitigating group
r_losses . . .

v H/g p(gnqeg> dro's issues with varying

2 grlosseslg] 0 irreducibility of losses

13: nd for

. for each group g do across groups

15: 4y Ej;qq;,

16: end for

17:  endif

18: I?i:&xqum fori=1,...,B;

19: [‘, = BLL Ef;l gz

200 00 9= _ v, L

21: end for
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep- G ro u p - b a S e d reg u | a r i Za t i O n

resents the model parameters.

1: Input: Step sizes 7, 17¢; smoothing parameter «;; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3: fort =1toT do
4 B={(@ny o)}l
50 X7 duration(x;) = d .
6 L =L(00); (2;,y;)) fori = 11to0 B, Ensures groups with
7. grlosses[g] < gr_losses[g] U {Zil Ei} I . I
8: if grlosses[g] # () Vg then ower qg receive ia rger
A S updates when CTC
. 7 Legrlosses[g]
10: 97 |grlosses[g]| I . I
e e () osses are similar,
g g /! + .
12: gr_losses[g] < 0 E helplng them CatCh u p
13: nd for . . .
14: :ore:l)chgrot/lpgdo durlng traln'ng
15: qq Zj;qq;/
16: end for
17:  endif
18: I?i:&xqum fori=1,...,B;
-1 -
19: L= B PO
200 00 9= _ v, L
21: end for
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep- G ro u p - b a S e d reg u | a r i Za t i O n

resents the model parameters.

1: Input: Step sizes 7, 17¢; smoothing parameter «;; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3: fort =1toT do
4 B={(riyi )}
5. XB duration(x;) = d . .
6 L= 600 (1)) for _{1 0B, } Prevents under-training
7. grlosses[g] < gr_losses[g] U Ziitl 4 . .
8 ifgrlosses[g] # 0 Vg then by reducing divergence
9: for each group g do . .
. Y ot £ in DRO weights across
) 97 |grlosses[g]| groups
Ngl.
11: Q5 < Qg X oXp (7%:9&)
12: gr_losses[g] < 0
13: end for
14: for each group g do
a
15: qq < -
Dy Uy

16: end for
17:  endif
18 ly=4; xqexm fori=1,..., B,

S
19: = — ot él

[' BL 21:1 }
20: 0 9= — VL
21: end for
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep- G rO u p - b a S e d re g u | a r i Za t i O n

resents the model parameters.

1: Input: Step sizes 7, ne; smoothing parameter o;; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3: fort =1to7 do
& B={(@npn o)}l
50 X7 duration(x;) = d .
6 L =000 (z;,y;)) fori=1to B, ngher values of the
7:  grlosses[g] < gr-losses[g] U {Zil Ei}
8: if grlosses[g] # 0 Vg then new hyperparameter a
9: for each group g do
S e £ reduce the strength of
10: = =
lgr_losseslall .
— e this effect
11: Qg < Qg X €Xp 7%_‘_0[
TZ° BI_10SSCS ] ]
13: end for
14: for each group g do
/
15: - =1
o zy’ qs,)’

16: end for
17:  endif
18 ly=4; xqexm fori=1,..., B,

.1 5 -
19: = — ot él

[' BL 21:1 }
20: 0 9= — VL
21: end for
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep-
resents the model parameters.

1: Input: Step sizes 7, ne; smoothing parameter o;; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3: fort=1to 7 do
4 B={(z,y 9}
5. XB duration(x;) = d
6:  £; = L0V (25,;)) fori =1to B, i
7 grlossesly] - grlosseslg] U {35, 1) We multiply losses by the number of
o ifgfr,losseﬁ[g] # @Vg then groups, which improves training
: or each group g do ona q
. Y repionel £ stability. This way, losses are also
' ! |ng°8898[9}77| ; comparable to models trained
. ! / q+9g 9 9
1 g = g X OXP (7% +a> without CTC-DRO, removing the
12: gr_losses[g] < 0
o e need to tune hyperparameters for
14: for each group g do both models.
15: =7
4 zy’ qs,)’
16: end for
17. end if
[ 18: I?i:&-xqum fori=1,...,B; ] H
190 L=—>"04

By
200 00 9= _ v, L
21: end for “
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Algorithm 2 Optimization algorithm for CTC-DRO, 6 rep-
resents the model parameters.

1:

Input: Step sizes 7, 19; smoothing parameter o; num-
ber of groups m; loss function [/; duration of each batch
d; number of data points in t*" batch B,

2: Initialize 6®), {g,} and gr_losses
3: fort =1to7 do
4 B={(riyi )}
5. XB duration(x;) = d
6:  £; = L0V (25,;)) fori =1to B,
7. grlosses[g] < gr_losses[g] U {Zil Ei}
8: if grlosses[g] # 0 Vg then
9: for each group g do
10: 7 Legrlosses[g] L
: =
|grlosses[g]|
Nqly
11: L q —
12: gr_losses[g] < 0
13: end for
14: for each group g do
/
15: gy ¢ =2+
zy’ qs,)’
16: end for
17:  endif
18 ly=4; xqexm fori=1,..., B,
19: ,Z, = i -Bf gz
BL 21:1 }
20: 0 9t _ VL
21: end for

We accumulate gradients across
16 batches before updating
model parameters, simulating
larger batches with multiple
groups.
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Experimental setup

Model fine-tuning

~~~~~

Transformer
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Experimental setup

* MMS and XLS-R fine-tuned with and without CTC-DRO and with group DRO

e Groups in algorithm correspond to individual languages in training datasets
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Experimental setup

* Two-layer Transformer encoder added on top of pre-trained models
to predict characters using CTC

* All model weights updated during fine-tuning

* Learning rate tuned on development data
* DRO models use same learning rate as baseline (i.e., non-DRO) models for
clear comparison

* DRO-specific hyperparameters:
* Step size n,: 102 and 10*
* Smoothing parameter a: 0.1, 0.5, and 1
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Dataset: following ML-SUPERB 2.0

NoO. LANGUAGE ISO Corprus
CZECH CES CV
MANDARIN CMN  FLEURS

| MIN NAN NAN CV
PoOLISH POL M-AILABS
ROMANIAN RON  FLEURS
SPANISH SPA VOXFORGE
CANTONESE YUE FLEURS
CROATIAN HRV  FLEURS

2 ENGLISH ENG LAD
ITALIAN ITA FLEURS
PERSIAN FAS CV
SLOVAK SLK FLEURS
KHMER KHM  FLEURS
KOREAN KOR  FLEURS
NORTHERN KURDISH KMR CV

3
NORWEGIAN NYNORSK NNO CV
SOUTHERN NDEBELE NBL  NCHLT
TATAR TAT CV

SINDHI SND  FLEURS
SLOVENIAN SLV CvV
SOUTHERN SOTHO SOT GOOGLEI18N
SPANISH SPA M-AILABS
URDU URD FLEURS
WESTERN MARI MR]J CvV
ENGLISH ENG  VOXFORGE
GERMAN DEU VOXFORGE
HEBREW HEB FLEURS
JAPANESE JPN FLEURS
RUSSIAN RUS FLEURS
SPANISH SPA FLEURS
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Model Type LID ces cmn nan pol ron spa CER
Baseline 96.62 836 56.67 59.74  3.65 1429 179 24.08
MMS  group DRO 62.80 2449 4811 86.01 5.35 18.11  9.10 31.86
CTC-DRO 97.58 10.36 45.08 56.15  3.61 14.09 194 21.87
Baseline 7778 26.56  187.93 84.11 11.16 30.17 11.21 58.53
XLSR group DRO 86.82 2743 86.55 82.74 11.64 2547 7.76 40.27
CTC-DRO 87.76 1836 59.72 64.04 7.85 2657 723 30.63
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Model Type LID eng fas hrv ita slk yue CER
Baseline 9843 0.18 2197 10.58 4.57 10.64 45.17 15.52
MMS  group DRO 9732 10.79 29.87 1243 890 1243 5691 21.89
CTC-DRO 9820 0.79 2273  8.96 6.71 5.78 43.53 14.75
Baseline 96.64 0.38 1897  6.83 4.68 891 6479 17.43
XLSR group DRO 8859 11.89 31.39 1234 5.69 11.72 5998 22.17
CTC-DRO 96.38 0.78 21.79 1193 5.78 8.30 43.67 15.38
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Model Type LID khm kmr kor nbl nno tat CER
Baseline 99.17 32.07 11.60 36.60 8.09 244 986 16.78
MMS group DRO 98.84 30.72 1890 33.39 18.52 10.01 13.54 20.85
CTC-DRO 99.17 3275 11.82 29.59 8.47 2.88 10.20 15.95
Baseline 97.85 34.01 11.37 32.57 8.01 220 1038 1642
XLSR group DRO 96.53 36.88 21.44 3529 24.16 1049 16.59 24.14
CTC-DRO 96.53 3138 11.94 3243 8.36 297 12.60 16.61
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Model Type LID mrj slv snd sot spa urd CER
Baseline 89.86 10.34 12.68 20.37 1489 453 2838 15.20
MMS group DRO 92.08 9.35 13.67 19.86 16.09 434 30.53 15.64
CTC-DRO 94.68 9.55 12.79  19.50 1462 472 2627 14.58
Baseline 88.38 14.00 483 2333 11.57 4.16 29.67 14.59
XLSR group DRO 8345 1569 2631 1939 2347 387 2392 18.78
CTC-DRO 8891 1195 6.69 2097 13.80 4.79 2422 13.74
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Model Type LID deu eng heb jpn rus spa CER
Baseline 9843 690 11.78 33.73 9821 1273 792  28.55
MMS  group DRO 6696 28.69 27.06 3509 61.12 17.68 9.54 29.86
CTC-DRO 98.85 999 14.13 31.87 5298 1394 8.67 21.93
Baseline 89.00 522 1143 3798 12094 11.84 7.85 32.54
XLSR group DRO 57.71 29.24 2744 4466 98.11 17.66 11.20 38.05
CTC-DRO 90.97 6.11 11.23 4149 77.12 11.08 892 25.99
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Analysis: group DRO

Weights fluctuate. During

1.01 . . .
0.9 N‘W large portions of training, all
0.8 | of the DRO weight is
I ces .
2 07 | . concentrated on a single
© 0.6 .
205 } nan language, which is not the
. I .
2 04 . worst-performing language
0.3 spa
0.2
o3l LML -
00 Jh L Al ‘J' s ' . K daa ) o > 24
|
Iteration “




Analysis: CTC-DRO

Weights fluctuate less,
mitigating undertraining of any
language. The worst-performing
language has one of the largest
weights.

1.0

0.9
0.81
0.71

<06

2 0.5

© 0.4/

0 0.3
0.21
0.11

0.0+

— Cces

Iteration
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Analysis: group DRO

Weights fluctuate. During

1.01

0.9/ large portions of training, all

0.8 of the DRO weight is
g0 concentrated on a single
§o:5 language, which is not the
004 worst-performing language
0.3

0.2

0.1 H

0.0

Iteration “
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Analysis: CTC-DRO

Weights are grouped much (1)2 — deu
more tightly, mitigating 0.8 — E:g
undertraining of any language. = 07 — pn
The worst-performing language 206 "
has one of the largest weights. g gi — spa
e 0.3
0.21
H 0.1
0.0
“ Iteration
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Analysis

Model Type LID deu eng heb jpn rus spa  CER
Baseline 98.43 690 11.78 33.73 9821 1273 7.92 28.55
MMS  CTC-DRO 98.85 999 14.13 31.87 5298 1394 8.67 2193
CTC-DRO - duration-matched group losses 66.08 19.36 21.24 30.94 84.61 12.88 8.26  29.5
CTC-DRO - group-based regularization 13.22  95.63 96.01 98.77 102.13 9741 97.28 979
Baseline 89.00 522 1143 3798 12094 11.84 17.85 3254
XLSR CTC-DRO 9097 6.1 11.23 4149 77.12 11.08 8.92 2599
CTC-DRO - duration-matched group losses 51.54 35.60 36.54 7291 11523 2743 1590 50.6
CTC-DRO - group-based regularization 43.17 1852 2449 69.85 19420 4121 19.88 61.4
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Conclusion of CTC-DRO

* We find that CTC-DRO consistently reduced the worst-language CER
and improved the average CER in most cases

e Future work will include different models, scale-up the number of
languages, and handle multi-dimensional group definitions (e.g.,
language, gender, age)

Images are generated by DALL-E or directly from Flaticon.com
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Conclusions

’* ML-SUPERB 2.0 provides a way to reliably measure
speech recognition model performance

)
’ CTC-DRO reduces the performance gap between languages to help
improve universal access to modern speech technology
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