MAKING TRANSFORMERS WORK FOR AUDIO CODING

JULIAN D. PARKER, STABILITY AI

WHO AM I?

- Physics -> Musical Acoustics -> DSP -> AI
- Worked as a researcher in academia and industry for 15 years.
- Most industrial work has focused on processing or generating musical sound using DSP and latterly ML/AI.

Prem Akkaraju CEO

Sean Parker Executive Chairman

- We make open-weights generative models for professional media production workflows, across many modalities (image, video, 3d, audio).
- speech).

Stabity.al

James Cameron Board Member

- I'm part of the Audio team, which is primarily concentrated on music + general audio (not

- We released most popular open-weights model for audio generation - Stable Audio Open

WHAT IS THE TOPIC FOR TODAY?

"Scaling Transformers for Low-Bitrate High-Quality Speech Coding" Julian D. Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, Xubo Liu Accepted at ICLR 2025 in Singapore - come meet us if you're there!

SETTING THE SCENE

STATUS QUO IN MARCH 2024

- Most successful codecs for generative use (especially music) are Encodec and DAC, both of which use broadly the same arch.
- Convolutional arch built on fairly old (circa 2016 or earlier) structures (ResNet, dilated convs etc).
- **Relatively small model size**, with no clear path to scaling.
- Improvements mainly coming from adding more complicated training objectives and discriminators.

MOTIVATION - WHY TRANSFORMERS?

- - Great scaling properties
 - Mature + optimized implementations
- generic approach?
- - maybe there's potential to exploit this.

Obvious reason: transformers have become default architecture for most problems

- Personal reason: been hurt too many times by the `bitter-lesson`, why not try a very

- Principled reason: most traditional compression algorithms heavily leverage nonuniform compression across a sequence, convolutional neural codecs do not.

- Attention is very effective at moving and rearranging information across a sequence -

MOTIVATION - WHAT DID WE WANT TO **ACHIEVE?**

- High quality reconstruction at very low bitrate.
- Viable architecture where the majority of parameters are in transformer blocks.
- Evidence that scaling parameter count improves reconstruction quality.
- Try out some interesting new techniques.
- N.B. We don't have production speech models at Stability, so this was intended primarily as a research work. Many decisions reflect this. Novelty > performance.

DESIGN DECISIONS

BROAD DESIGN PRINCIPLES

- Stick with overall architecture from Encodec + DAC
 - Encoder > Bottleneck > Decoder + Discriminator
 - No generative decoder or post-filter
- Try to eliminate the majority of convolutional elements.
- Utilize standard transformer blocks.
- Aim for bottleneck to use low number of tokens per timestep (no 8-level RVQ).
- Prioritise natural audio quality.

TRANSFORMERS NEED EMBEDDINGS

OPTIONS

- Spectrograms
 - Mel spectrograms limited by inversion techniques 🗙
 - Linear complex spectrograms not critically sampled (apart from special cases) 🗙
- Existing convolutional up/downsampling networks add extra complexity X
- MDCT/wavelets work well, but errors more audible, + technically not perfect reconstruction
- Patching is better! Critically sampled, perfect reconstruction, very simple + error more noise-like

BOTTLENECK OPTIONS

- VQ / RVQ

- Requires auxillary losses and straight-through gradient estimation
- Generally used successfully with many residual tokens.

– FSQ

- appealingly simple (no auxillary losses)
- can get around straight-through gradient estimation using noise
- downside very few configurations that lead to sensible codebook sizes
 - **Residual version?**

RESIDUAL FSQ

- We noticed a couple of interesting properties of FSQ.
 - Certain sets of levels are purely supersets of other sets of levels.
 - These sets can be combined with scaling to produce each other (with some caveats).
 - This property can be used to decompose single FSQ bottleneck into residual version, after training.

$\ell_3 + \frac{\ell_3}{2} + \frac{\ell_3}{4} \supset \ell_9$

Quantized Positions

ℓ_3	$\{-1, 0, 1\}$
ℓ_5	$\{-1, -0.5, 0, 0.5, 1\}$
ℓ_9	$\{-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1\}$

Table 1: FSQ quantization points for level numbers conforming to $L = 2^n + 1$, $n \in \mathbb{Z}^+$, up to n = 3.

PUTTING EVERYTHING TOGETHER

ARCHITECTURE

- Minimal amount of convolution.

- Needed to mitigate upper limit on patch size.
- Standard attention blocks with
 RoPE + non-causal sliding
 window mask.

DATA

- general audio (44.1kHz stereo).
- For speech, keeps things simple by focusing on LibriLight.
- For music + general audio, we can use the same dataset as Stable Audio Open -**Freesound + Free Music Archive**
- Modest dataset sizes in both cases.

- Initially decided to train two variants of model - speech (16kHz mono) and music &

PROBLEMS

- Zero embedding issue
 - First trainings marred with instability training data not practical!
 - Traced issue to LayerNorm in transformer can relax the epsilon to mitigate.
- Powerful transformer decoder likes to over-fit on biases introduced by loss functions.
 - STFT loss produces periodic artefacts de-emphasise it
 - Discriminator causes spotty artefacts along predictable grid examine discriminator for bias and de-emphasise adversarial component in favour of feature matching.

- First trainings marred with instability unless we aggressively stripped silence from

DISCRIMINATOR BIAS

- Seems to be present in basically all current discriminator archs (those with MPD are the worst)
- Can be partially mitigated by inharmonically spaced FFT sizes.

BEFORE

RESULTS OF INITIAL LARGE RUNS

- Speech intelligibility not perfect
 - Audio quality very good, but rare phonemes dropped or slurred

Model	SI-SDR ↑	Mel ↓	STFT \downarrow	PESQ ↑	STOI ↑
TAAE	4.73	0.86	1.26	3.09	0.92
w.o. perceptual loss	4.80	1.18	1.59	2.82	0.88

- Music version too generative
 - Musical version of intelligibility problem?
 - instruments, changed timbre etc)
 - Drop for future work as we have no strong equivalent of WavLM for music.

- Solution: Finetune model with perceptual loss on decoder output using internal embeddings of WavLM

Audio quality is good, but not possible to evaluate in MUSHRA due to large differences (dropped

EVALUATION

OBJECTIVE METRICS

Model	BPS	TPF	TPS	SISDR ↑	Mel ↓	STFT \downarrow	PESQ ↑	STOI ↑	MOSNet ↑
DAC	$\begin{array}{c} 1000\\ 2000 \end{array}$	$2 \\ 4$	$\begin{array}{c} 100 \\ 200 \end{array}$	$-6.51 \\ -0.37$	$\begin{array}{c} 1.49 \\ 1.07 \end{array}$	$\begin{array}{c} 1.76 \\ 1.41 \end{array}$	$\begin{array}{c} 1.64 \\ 2.29 \end{array}$	$\begin{array}{c} 0.75 \\ 0.85 \end{array}$	$\begin{array}{c} 2.77 \\ 2.95 \end{array}$
Encodec	$\begin{array}{c} 1500 \\ 3000 \end{array}$	$2 \\ 4$	$\begin{array}{c} 150 \\ 300 \end{array}$	$\begin{array}{c} -0.22\\ 2.77\end{array}$	$\begin{array}{c} 1.14 \\ 0.95 \end{array}$	$\begin{array}{c} 1.49 \\ 1.33 \end{array}$	$\begin{array}{c} 2.36 \\ 2.84 \end{array}$	$\begin{array}{c} 0.85 \\ 0.90 \end{array}$	$\begin{array}{c} 2.87 \\ 2.98 \end{array}$
SpeechTokenizer	$\begin{array}{c} 1000 \\ 1500 \end{array}$	$2 \\ 3$	$\begin{array}{c} 100 \\ 150 \end{array}$	$-3.30 \\ -1.33$	$\begin{array}{c} 1.06 \\ 0.91 \end{array}$	$\begin{array}{c} 1.37 \\ 1.25 \end{array}$	$\begin{array}{c} 2.41 \\ 2.70 \end{array}$	$\begin{array}{c} 0.85 \\ 0.88 \end{array}$	$\begin{array}{c} 2.94 \\ 3.10 \end{array}$
SemantiCodec	$\begin{array}{c} 337.5\\ 675 \end{array}$	2	$\begin{array}{c} 25 \\ 50 \end{array}$		$\begin{array}{c} 1.20 \\ 0.98 \end{array}$	$\begin{array}{c} 1.53 \\ 1.32 \end{array}$	$\begin{array}{c} 2.21 \\ 2.65 \end{array}$	$0.79 \\ 0.86$	$\begin{array}{c} 3.24 \\ 3.29 \end{array}$
Mimi	$\begin{array}{c} 550 \\ 1100 \end{array}$	4 8	$\begin{array}{c} 50 \\ 100 \end{array}$	$\begin{array}{c}-4.45\\2.20\end{array}$	$\begin{array}{c} 1.19 \\ 0.94 \end{array}$	$\begin{array}{c} 1.55 \\ 1.31 \end{array}$	$\begin{array}{c} 2.48\\ 3.01 \end{array}$	$\begin{array}{c} 0.85 \\ 0.90 \end{array}$	$\begin{array}{c} 3.11\\ 3.24\end{array}$
TAAE + no quant	$\begin{array}{c} 400 \\ 700 \end{array}$	$\begin{array}{c} 1\\ 2\\ -\end{array}$	$25 \\ 50$	$3.18 \\ 4.73 \\ 5.08$	$0.97 \\ 0.86 \\ 0.85$	$1.35 \\ 1.26 \\ 1.25$	$2.96 \\ 3.09 \\ 3.12$	$0.90 \\ 0.92 \\ 0.92$	3.36 3.36 3.36

SUBJECTIVE TESTS

- **MUSHRA** methodology without anchor.
- Approx 25 participants, mostly experts/ researchers.
- Clear preference for our model very close to ground truth.
- Preference seems greater than expected from objective metrics - improvements in naturalness?

SCALING

Param. count	SI-SDR ↑	Mel ↓	STFT ↓	PESQ ↑	STOI ↑
240M	3.52	1.24	1.67	2.74	0.87
540M	4.31	1.21	1.66	2.80	0.88
950M	4.80	1.18	1.59	2.82	0.88

- We repeated **pretraining** phase (no WavLM loss) at multiple parameter counts.
- scales quite gracefully even to <100M params.

Evidence for improved reconstruction with larger parameter count is clear.

- Our own later experiments, plus work of others, has shown that this type of architecture

GENERALISATION

- Reviewers expressed concern about Englishonly dataset and possibility of overfitting.
- To test this, we evaluated on Multilingual LibriSpeech.
- Results show decent generalisation to other languages - matching some baselines which are trained on multilingual datasets.

Model	BPS	SI-SDR \uparrow	Mel ↓	$\mathbf{STFT}\downarrow$	PESQ ↑	STOI ↑
			Italian			
Encodec	-1500		-1.20	1.55	$ \overline{2}.\overline{40}$	0.85
DAC	2000	-0.13	1.11	1.46	2.23	0.84
SemantiCodec	675	_	1.05	1.41	2.57	0.84
SpeechTokenizer	1000	-2.61	1.07	1.42	2.40	0.84
Mimi	1100	2.69	1.02	1.42	3.00	0.90
TAAE	700	4.54	0.99	1.38	2.89	0.89
			Polish			
Encodec	-1500	1.39	-1.12	1.49	$\overline{2}.\overline{42}$	0.86
DAC	2000	1.30	1.02	1.40	2.38	0.87
SemantiCodec	675	_	1.08	1.42	2.36	0.85
SpeechTokenizer	1000	-1.70	1.08	1.42	2.36	0.85
Mimi	1100	2.68	1.04	1.46	2.82	0.90
TAAE	700	4.45	0.95	1.36	2.66	0.89
			Dutch			
Encodec	1500	1.18	1.13	1.51	-2.59	0.86
DAC	2000	1.30	0.98	1.36	2.55	0.87
SemantiCodec	675	_	1.09	1.42	2.34	0.83
SpeechTokenizer	1000	-5.01	1.09	1.42	2.34	0.83
Mimi	1100	2.84	0.98	1.39	3.01	0.90
TAAE	700	4.03	0.90	1.29	2.93	0.88
			French			
Encodec	-1500		1.16	1.50	$\overline{2.51}$	0.85
DAC	2000	2.68	0.98	1.34	2.41	0.87
SemantiCodec	675	_	1.02	1.36	2.54	0.83
SpeechTokenizer	1000	-0.50	1.04	1.36	2.38	0.84
Mimi	1100	4.61	0.98	1.38	2.98	0.89
TAAE	700	6.70	0.94	1.30	2.87	0.88
			Portuguese			
Encodec	-1500		1.18	1.56	$\overline{2}.\overline{49}$	0.84
DAC	2000	-1.05	1.07	1.44	2.35	0.84
SemantiCodec	675	_	1.04	1.42	2.59	0.83
SpeechTokenizer	1000	-4.15	1.07	1.42	2.43	0.83
Mimi	1100	1.45	0.98	1.42	3.04	0.89
TAAE	700	3.14	0.93	1.33	2.93	0.87
			German			
Encodec	1500	0.04	-1.17	1.53	$ \overline{2}.\overline{40}$	0.84
DAC	2000	-0.53	1.09	1.44	2.34	0.85
SemantiCodec	675	_	1.07	1.43	2.31	0.83
SpeechTokenizer	1000	-3.86	1.10	1.43	2.31	0.83
Mimi	1100	1.84	1.01	1.42	2.95	0.89
TAAE	700	4.94	0.92	1.32	2.83	0.88
			Spanish			
Encodec	-1500	2.32	1.21	1.54	$ \overline{2}.\overline{42}$	0.86
DAC	2000	1.93	1.04	1.39	2.36	0.86
SemantiCodec	675	_	1.04	1.39	2.52	0.84
SpeechTokenizer	1000	-0.84	1.07	1.42	2.43	0.85
Mimi	1100	3.82	1.07	1.44	2.93	0.90
	700	6 15	0.98	1.37	2.80	0.89

POST-PAPER WORK

TTS EXPERIMENTS / WEIGHTS RELEASE

- We wanted to release the model weights publicly for others to experiment with, so we made some tests with most common downstream task - TTS
 - Naive LM approach had difficulty modelling token stream well.
 - Some **precedent** with this in literature.
 - How can we improve this?
- Finetuned model further to regress force-aligned phonemes from bottleneck latents using CTC head.
 - Significant improvement for TTS, slightly damages reconstruction metrics some reports in the wild of it damaging generalization.
 - Released two versions of model, `stable-codec-speech-16k` with CTC, and `stable-codecspeech-16k-base` without. Available on 🤗.

LIMITATIONS / LEARNINGS / FUTURE WORK

- Directly passing a real world signal into a transformer will always present difficulties.
- A very powerful decoder can present problems as well as advantages.
- How can this arch work properly with music (watch this space).
- How can we eliminate the last elements of convolution?
- Relatively small dataset + large param count means that there's still the possibility that existing model is overfit. Future work should scale up data.
- Is FSQ the best practical choice? Not sure. It's great for optimising reconstruction/bit, but might
 not be the most practical downstream.

QUESTIONS?