MAKING TRANSFORMERS
WORK FOR AUDIO CODING




WHO AM I?

- Physics -> Musical Acoustics -> DSP -> Al
- Worked as a researcher in academia and industry for 15 years.

- Most industrial work has focused on processing or generating
musical sound using DSP and latterly ML/AL.
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- We make open-weights generative models for professional media production
workflows, across many modalities (image, video, 3d, audio).

= |'m part of the Audio team, which is primarily concentrated on music + general audio (not
speech).

- We released most popular open-weights model for audio generation - Stable Audio Open



WHAT IS THE TOPIC FOR TODAY?

“Scaling Transtormers for Low-Bitrate High-Quality Speech Coding”

Julian D. Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, Xubo Liu

Accepted at ICLR 2025 in Singapore - come meet us if you're there!



SETTING THE SCENE



STATUS QUO IN MARCH 2024

Most successful codecs for generative use (especially music) are Encodec and DAC, both of which use broadly the same
arch.

Convolutional arch built on fairly old (circa 2016 or earlier) structures (ResNet, dilated convs etc).

Relatively small model size, with no clear path to scaling.

Improvements mainly coming from adding more complicated training objectives and discriminators.

] =€w
T o .

__ _ i

%] = B Em B ‘? 6 Conv2D | gd

o lol ol o] & gJaJ&J&J 2 el 5l Bl s - Hede 7

W A "IN IR B sl o 155115 5|8 ag g
S\EEEEos T TETE R T SR
=== |= = g_ _. B 8 U?%x%x .
- : : %\ . «ca\es
D— SS SO N I:] mu\“,s

ﬁ‘es

Figure adopted from A. Défossez



MOTIVATION - WHY TRANSFORMERS?

= Obvious reason: transformers have become default architecture for most problems

= Great scaling properties
- Mature + optimized implementations

= Personal reason: been hurt too many times by the " bitter-lesson”, why not try a very
generic approach?

= Principled reason: most traditional compression algorithms heavily leverage non-
uniform compression across a sequence, convolutional neural codecs do not.

- Attention is very effective at moving and rearranging information across a sequence -
maybe there’s potential to exploit this.



MOTIVATION - WHAT DID WE WANT TO
ACHIEVE?

Viable architecture where the majority of parameters are in transformer blocks.
High quality reconstruction at very low bitrate.
Evidence that scaling parameter count improves reconstruction quality.

Try out some interesting new techniques.

= N.B. We don’t have production speech models at Stability, so this was intended primarily

as a research work. Many decisions reflect this. Novelty > performance.



DESIGN DECISIONS




BROAD DESIGN PRINCIPLES

- Stick with overall architecture from Encodec + DAC

- Encoder > Bottleneck > Decoder + Discriminator

- No generative decoder or postfilter

= Try to eliminate the majority of convolutional elements.

- Utilize standard transformer blocks.

= Aim for bottleneck to use low number of tokens per timestep (no 8-level RVQ).

= Prioritise natural audio quality.



TRANSFORMERS NEED EMBEDDINGS

OPTIONS

- Spectrograms

- Mel spectrograms limited by inversion techniques X

- Linear complex spectrograms not critically sampled (apart from special cases) X

- Existing convolutional up/downsampling networks add extra complexity X
- MDCT/wavelets work well, but errors more audible, + technically not perfect reconstruction

= Patching is better! Critically sampled, perfect reconstruction, very simple + error more

noise-like



BOTTLENECK OPTIONS

= VQ / RVQ

- Requires auxillary losses and straight-through gradient
estimation

= Generally used successfully with many residual tokens.

= FSQ

- appealingly simple (no auxillary losses)

= can get around straight-through gradient estimation using noise

- downside - very few configurations that lead to sensible codebook
sizes

= Residual version?

Figure adopted from “Finite Scalar Quantization: VQ-VAE made simple” by F. Mentzer et al



RESIDUAL FSQ

- We noticed a couple of interesting
properties of FSQ. 63 _|_ % _|_ % - 69

= Certain sets of levels are purely
supersets of other sets of levels.

Quantized Positions

= These sets can be combined with

: : 4 —1,0, 1
scaling to produce each other (with 5? (1 {_0.5 ) 3.5 1
some caveats). ly {—1,—-0.75, —0.5, —0.25, 0, 0.25, 0.5, 0.75, 1}
= This property can be used to Table 1: FSQ quantization points for level numbers

decompgse single FSQ bottleneck conformingto L = 2" + 1,n € Z*,up ton = 3.
into residual version, after
training.



PUTTING EVERYTHING TOGETHER



ARCHITECTURE

= Minimal amount of convolution. I|

- Needed to mitigate upper limit
on patch size.

= Standard attention blocks with
RoPE + non-causal sliding
window mask.
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DATA

- Initially decided to train two variants of model - speech (16kHz mono) and music &
general audio (44.1kHz stereo).

- For speech, keeps things simple by focusing on LibriLight.

= For music + general audio, we can use the same dataset as Stable Audio Open -
Freesound + Free Music Archive

= Modest dataset sizes in both cases.



PROBLEMS

= Zero embedding issue

= First trainings marred with instability unless we aggressively stripped silence from
training data - not practical!

= Traced issue to LayerNorm in transformer - can relax the epsilon to mitigate.
- Powerful transformer decoder likes to over-fit on biases introduced by loss functions.
- STFT loss produces periodic artefacts - de-emphasise it

- Discriminator causes spotty artefacts along predictable grid - examine
discriminator for bias and de-emphasise adversarial component in favour of feature
matching.



DISCRIMINATOR BIAS

= Seems to be present in basically all current discriminator archs (those with MPD are the worst)

= Can be partially mitigated by inharmonically spaced FFT sizes.
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RESULTS OF INITIAL LARGE RUNS

- Speech intelligibility not perfect
- Audio quality very good, but rare phonemes dropped or slurred

- Solution: Finetune model with perceptual loss on decoder output using internal embeddings of WavLM

Model SI-SDR 1 Mel | STFT | PESQ 1 STOI |
TAAE 4.73 0.86 1.26 3.09 0.92
w.0. perceptual loss 4.80 1.18 1.59 2.82 0.88

= Music version too generative

= Musical version of intelligibility problem?

- Audio quality is good, but not possible to evaluate in MUSHRA due to large ditferences (dropped
instruments, changed timbre etc)

= Drop for future work as we have no strong equivalent of WavLM for music.



EVALUATION




OBJECTIVE METRICS

Model BPS TPF  TPS  SISDRT Mel] STFT] PESQ+ STOIt MOSNett
e 1000 2 100 —6.51  1.49 1.76 1.64 0.75 2.77
2000 4 200  —0.37  1.07 1.41 2.29 0.85 2.95
I 1500 2 150  —0.22  1.14 1.49 2.36 0.85 2.87
3000 4 300 2.77  0.95 1.33 2.84 0.90 2.98
SocechTokenipey 1000 2 100 —3.30  1.06 1.37  2.41 0.85 2.94
P 1500 3 150  —1.33  0.91 1.25 2.70 0.88 3.10
SemantiCodee 3375 5 25 - 1.20 1.53 2.21 0.79 3.24
675 50 - 0.98 1.32 2.65 0.86 3.29
i 550 4 50 —4.45  1.19 1.55 2.48 0.85 3.11
1100 8 100 2.20 0.94 1.31 3.01 0.90 3.24
TAAR 400 1 25 3.18 0.97 1.35 2.96 0.90 3.36
700 2 50 4.73 0.86 1.26 3.09 0.92 3.36
+ o quant. - - = 5.08 0.85 1.25 3.12 0.92 3.36




SUBJECTIVE TESTS

= MUSHRA methodology without anchor.

- Approx 25 participants, mostly experts/
researchers.

- Clear preference for our model - very close
to ground truth.

- Preference seems greater than expected from
objective metrics - improvements in naturalness?
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SCALING

Param. count SI-SDR 1 Mel | STFT | PESQ 1 STOI 1
240M 3.52 1.24 1.67 2.74 0.87
540M 4.31 1.21 1.66 2.80 0.88
950M 4.80 1.18 1.59 2.82 0.88

- We repeated pretraining phase (no WavlLM loss) at multiple parameter counts.

- Evidence for improved reconstruction with larger parameter count is clear.

= Our own later experiments, plus work of others, has shown that this type of architecture
scales quite gracefully even to <100M params.



Model BPS SI-SDR 71 Mel | STFT | PESQ 1 STOI t
Italian
~ Encodec 1500 | 0.63 1.20 155 240 @ ( 0.85

2000 —0.13 1.11 1.46 2.23 0.84

SemantiCodec 675 — 1.05 1.41 2.57 0.84
SpeechTokenizer 1000 —2.61 1.07 1.42 2.40 0.84
Mimi 1100 2.69 1.02 1.42 3.00 0.90
TAAE 700 4.54 0.99 1.38 2.89 0.89

- Reviewers expressed concern about English- N i

DAC 2000 1.30 1.02 1.40 2.38 0.87
° ojeo o SemantiCodec 675 — 1.08 1.42 2.36 0.85
only dataset and possibility of overfitting. e RV S -
TAAE 700 4.45 0.95 1.36 2.66 0.89
Dutch
T ho I t d M It.l. I ~ Encodec @ 1500 s S 1.13 1.1 259 | 0.86
DAC 2000 1.30 0.98 1.36 2.55 0.87
= |o test this, we evaluated on Mmulirillingua 3
a o SpeechTokenizer 1000 —5.01 1.09 1.42 2.34 0.83
Mimi .84 0.98 1.39 3.01 0.90
LibriSpeech. R -
French
" Encodec 1500 = . 3.12 1.16 150 251 0.85
o o DAC 2000 2.68 0.98 1.34 2.41 0.87
S iCod 675 — 1.02 1.36 2.54 0.83
- RGSU "'S ShOW decen'l' generallsatlon to ther SpecchTokenizer 1000 ~0.50 1.04 1.36 2.38 0.84
Mimi 1100 4.61 0.98 1.38 2.98 0.89
o o . TAAE 700 6.70 0.94 1.30 2.87 0.88
languages - matching some baselines which are e
Encodec 1500 —0.46 1.18 1.56 2.49 0.84
o of o DAC 2000 —1.05 1.07 1.44 2.35 0.84
S iCod 675 = 1.04 1.42 2.59 0.83
Ilqu I n ed o n m U Ih I I n g U a I d C“.CI sei‘s o ssenelilﬁolgeneiczer 1000 —4.15 1.07 1.42 2.43 0.83
Mimi 1100 1.45 0.98 1.42 3.04 0.89
TAAE 700 3.14 0.93 1.33 2.93 0.87
German
"~ Encodec 1500 1 (ON)ZI——— 1.17 1.3 240 < 0.84
DAC 2000 —0.53 1.09 1.44 2.34 0.85
)) )) )) SemantiCodec 675 — 1.07 1.43 2.31 0.83
SpeechTokenizer 1000 —3.86 1.10 1.43 2.31 0.83
Mimi 1100 1.84 1.01 1.42 2.95 0.89
TAAE 700 4.94 0.92 1.32 2.83 0.88
Spanish
"~ Encodec 1500 = i 1.21 ~ T 154 T T T 2427 T T T 0.86
DAC 2000 1.93 1.04 1.39 2.36 0.86
REAL OURS 0.7KBS MIMI 1.1KBS e OO R R S B -
) ) SpeechTokenizer 1000 —0.84 1.07 1.42 2.43 0.85

Mimi 1100 3.82 1.07 1.44 2.93 0.90
TAAE 700 6.15 0.98 1.37 2.80 0.89




POST-PAPER WORK




TTS EXPERIMENTS / WEIGHTS RELEASE

- We wanted to release the model weights publicly for others to experiment with, so we made some
tests with most common downstream task - TTS

= Naive LM approach had difficulty modelling token stream well.

- Some precedent with this in literature.

= How can we improve this?

= Finetuned model further to regress force-aligned phonemes from bottleneck latents using CTC
head.

- Significant improvement for TTS, slightly damages reconstruction metrics - some
reports in the wild of it damaging generalization.

- Released two versions of model, " stable-codec-speech-16k™ with CTC, and " stable-codec-
speech-16k-base” without. Available on @.


https://huggingface.co/stabilityai/stable-codec-speech-16k

LIMITATIONS / LEARNINGS / FUTURE WORK

= Directly passing a real world signal into a transformer will always present difficulties.
- A very powerful decoder can present problems as well as advantages.

= How can this arch work properly with music (watch this space).

= How can we eliminate the last elements of convolution?

- Relatively small dataset + large param count means that there’s still the possibility that existing
model is overfit. Future work should scale up data.

= |s FSQ the best practical choice? Not sure. It’'s great for optimising reconstruction/bit, but might
not be the most practical downstream.



QUESTIONS?



