
MAKING TRANSFORMERS
WORK FOR AUDIO CODING
JULIAN D. PARKER, STABILITY AI

- Physics -> Musical Acoustics -> DSP -> AI

- Worked as a researcher in academia and industry for 15 years.

- Most industrial work has focused on processing or generating
musical sound using DSP and latterly ML/AI.

WHO AM I?

- We make open-weights generative models for professional media production
workflows, across many modalities (image, video, 3d, audio).

- I’m part of the Audio team, which is primarily concentrated on music + general audio (not
speech).

- We released most popular open-weights model for audio generation - Stable Audio Open

Prem Akkaraju
CEO

Sean Parker
Executive Chairman

James Cameron
Board Member

WHAT IS THE TOPIC FOR TODAY?

“Scaling Transformers for Low-Bitrate High-Quality Speech Coding”
Julian D. Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, Xubo Liu

Accepted at ICLR 2025 in Singapore - come meet us if you’re there!

SETTING THE SCENE

STATUS QUO IN MARCH 2024
- Most successful codecs for generative use (especially music) are Encodec and DAC, both of which use broadly the same

arch.

- Convolutional arch built on fairly old (circa 2016 or earlier) structures (ResNet, dilated convs etc).

- Relatively small model size, with no clear path to scaling.

- Improvements mainly coming from adding more complicated training objectives and discriminators.

Figure adopted from A. Défossez

MOTIVATION - WHY TRANSFORMERS?
- Obvious reason: transformers have become default architecture for most problems

- Great scaling properties

- Mature + optimized implementations

- Personal reason: been hurt too many times by the `bitter-lesson`, why not try a very
generic approach?

- Principled reason: most traditional compression algorithms heavily leverage non-
uniform compression across a sequence, convolutional neural codecs do not.

- Attention is very effective at moving and rearranging information across a sequence -
maybe there’s potential to exploit this.

MOTIVATION - WHAT DID WE WANT TO
ACHIEVE?

- Viable architecture where the majority of parameters are in transformer blocks.

- High quality reconstruction at very low bitrate.

- Evidence that scaling parameter count improves reconstruction quality.

- Try out some interesting new techniques.

- N.B. We don’t have production speech models at Stability, so this was intended primarily
as a research work. Many decisions reflect this. Novelty > performance.

DESIGN DECISIONS

BROAD DESIGN PRINCIPLES
- Stick with overall architecture from Encodec + DAC

- Encoder > Bottleneck > Decoder + Discriminator

- No generative decoder or post-filter

- Try to eliminate the majority of convolutional elements.

- Utilize standard transformer blocks.

- Aim for bottleneck to use low number of tokens per timestep (no 8-level RVQ).

- Prioritise natural audio quality.

TRANSFORMERS NEED EMBEDDINGS
OPTIONS

- Spectrograms

- Mel spectrograms limited by inversion techniques ❌

- Linear complex spectrograms not critically sampled (apart from special cases) ❌

- Existing convolutional up/downsampling networks add extra complexity ❌

- MDCT/wavelets work well, but errors more audible, + technically not perfect reconstruction

- Patching is better! Critically sampled, perfect reconstruction, very simple + error more
noise-like ✅

BOTTLENECK OPTIONS
- VQ / RVQ

- Requires auxillary losses and straight-through gradient
estimation

- Generally used successfully with many residual tokens.

- FSQ

- appealingly simple (no auxillary losses)

- can get around straight-through gradient estimation using noise

- downside - very few configurations that lead to sensible codebook
sizes

- Residual version?

FSQ

(1, 0, -1)

1
0
-1

VQ

Figure 1: FSQ (left): the final encoder layer projects to d dimensions (d = 3 shown). We bound
each dimension of the encoder output z to L values (L = 3 shown), and then round to integers,
resulting in the quantized ẑ, the nearest point in this hypercube. VQ (right): The final encoder layer
projects to d dimensions (d = 7 shown, as d is typically much larger for VQ). The resulting vector
z is replaced with the closest vector from the codebook, ẑ, by nearest neighbor lookup.

Here, we are interested in simplifying the original VQ-VAE formulation (Van Den Oord et al., 2017)
with the following goals: i) remove auxiliary losses, ii) achieve high codebook utilization by design,
and iii) keep the functional setup the same to the extent that we obtain a drop-in replacement for VQ.

To this end, we draw inspiration from the neural compression literature, where discrete codes are
typically obtained with scalar quantization, following initial work (Ballé et al., 2016; Theis et al.,
2017): Each (scalar) entry in the representation z is independently quantized to the nearest integer
by rounding. The majority of the current compression literature uses unbounded scalar quantization,
where the range of integers is not limited by the encoder, only by constraining the entropy of the
representation. Other compression work relied on bounding the range of the quantizer (Mentzer
et al., 2018; Tschannen et al., 2018; Agustsson et al., 2019).

We call this approach finite scalar quantization (FSQ). The important insight is that by care-
fully choosing how to bound each channel, we can get an implicit codebook of (almost) any de-
sired size: Consider a vector z with d channels. If we map each entry zi to L values (e.g.,
via zi →↑ ↓L/2↔tanh(zi) followed by rounding to integers), we obtain a quantized ẑ, where ẑ
is one of Ld unique possible vectors. Fig. 1 shows FSQ for d=3, L=3, implying a codebook
C = {(↗1,↗1,↗1), (↗1,↗1, 0), (↗1,↗1, 1), . . . , (1, 1, 1)}, where |C| = Ld = 27.

To get gradients through the rounding operation, we use the STE like VQ-VAE. Thus, using FSQ in-
side an autoencoder trained with a reconstruction loss, we get gradients to the encoder that force the
model to spread the information into multiple quantization bins, as that reduces the reconstruction
loss. As a result, we obtain a quantizer that uses all codewords without any auxiliary losses.

To the best of our knowledge, FSQ has not been used for vision tasks outside of compression, where
VQ remains dominant. We aim to change this by revisiting FSQ in conjunction with powerful
transformers/language models. In summary, our contributions are:
1. We show that FSQ can serve as a drop-in replacement for VQ in various architectures, for dif-

ferent datasets and tasks, by applying it to MaskGIT (Chang et al., 2022) for image generation,
and in UViM (Kolesnikov et al., 2022) for depth estimation, colorization, and panoptic segmen-
tation. We observe a reduction of only 0.5 - 3% in the respective metrics, and correspondingly
get highly similar visual results. We emphasize that the two model families have very differ-
ent designs (convolutional vs. transformer-based autoencoders, masked vs. fully autoregressive
transformers, decoder-only vs. encoder-decoder transformers, etc.).

2. We analyze the trade-offs for VQ vs. FSQ, characterize the scaling behaviors w.r.t. codebook size
of the two models, and analyze the representation complexity from a compression angle. We find
that FSQ is able to leverage large codebooks for better reconstruction metrics, and better sample
quality. The codebook usage is very high for FSQ (↘100% for most models), without relying on
any auxiliary losses.

3. We show that the full generality of the VQ formulation gives little benefits over our simpler FSQ
method (VQ is actually worse for large codebooks C). This can be attributed to VQ being difficult
to optimize, whereas FSQ can be viewed as the standard VQ formulation changed such that a)
the encoder output is bounded and b) C is fixed. We note that the (implicit) FSQ C has much
smaller dimensionality vs. VQ (typically d < 10 for FSQ, vs. d ≃ 512 for VQ).

2

Figure adopted from “Finite Scalar Quantization: VQ-VAE made simple” by F. Mentzer et al

Figure adopted from “Introduction to Speech Processing”, Aalto University

RESIDUAL FSQ
Published as a conference paper at ICLR 2025

Using this formulation, we have the guarantee that the quantized latent ẑ belongs to the set of
quantized levels seen during training, despite not having been trained using a residual formulation.
A downside of this approach is that some rare combinations of tokens result in latents outside the
bounds of those seen originally. This can be guarded against by clipping the output of the quantizer
in the interval [→1, 1].

Quantized Positions
ω3 {→1, 0, 1}
ω5 {→1, →0.5, 0, 0.5, 1}
ω9 {→1, →0.75, →0.5, →0.25, 0, 0.25, 0.5, 0.75, 1}

Table 1: FSQ quantization points for level numbers
conforming to L = 2

n
+ 1, n ↑ Z+, up to n = 3.

As quantization noise training (Brendel
et al., 2024) is used, it is also possible
to remove the quantization entirely and
use the latent as a continuous embedding,
by retaining only the tanh section of the
quantization function in which case the au-
toencoder operates as if it has a tanh bot-
tleneck of the same latent dimension as the
FSQ bottleneck.

3.2.2 CALCULATING FSQ BITS-PER-SECOND

Using the post-hoc modification strategies described in Sec. 3.2.1, it is possible to achieve varying
bits-per-second rates even for the same level of resolution.

We calculate bits-per-second (bps) for a decomposition with n residual levels as:

bps = fr

n∑

i=0

↓log2(ki)↔ (5)

where fr is the number of frames per second of the codec (i.e. its latent rate) and the ki are the
codebook sizes for each stage of the residual decomposition. We obtain these codebook sizes as:

k = Ld (6)

where L is the number of FSQ levels for the residual stage and d is the FSQ dim.

For example, if we have an FSQ bottleneck with L = 17, d = 6, and a frame rate of 25Hz during
training, this results in an effective bps of 25↗↓log2(17

6
)↔ = 625. If we partition this codebook into

a residual formulation of 2 stages with 5 levels, we have an effective bps of 25↗2↗↓log2(5
6
)↔ = 700

but with a much more manageable codebook size for generative modelling. The same calculation of
bitrate can be used for RVQ, using the chosen codebook size for each residual level.

3.3 DISCRIMINATOR

We employ a discriminator inspired by that used in Encodec (Défossez et al., 2022), consisting of
multiple complex STFTs at different resolutions, followed by a combination of 1d and 2d convolu-
tions. We make three major changes compared to previous versions of this discriminator: we scale
parameter count by increasing the number of channels, we address systemic biases in the discrim-
inator by adopting unevenly spaced STFT resolutions, and we address a late-training bias towards
the noise-floor of the signal by scaling the magnitude of the complex STFTs before they are pro-
cessed by the convolutional networks. The last two of these changes are motivated by analyzing the
sensitivity of the discriminator to different regions of the input, and are justified in Appendix B.5.

3.4 TRAINING OBJECTIVES

Training the model is conducted in two stages with slightly different loss configurations - which we
refer to as pretraining and finetuning. In each stage, the loss is a composite between several recon-
struction losses and an adversarial loss derived from the discriminator network, which is trained in
parallel. The main difference between pretraining and finetuning stages is in which reconstruction
losses are used.

Similar to Défossez et al. (2024), we simplify the adversarial loss by removing the direct adversarial
classifier loss term and using only a normalized feature-matching L1 loss on the M per-layer features

6

Published as a conference paper at ICLR 2025

This scalar quantization function is applied (potentially with different L per dimension), to the ele-
ments of a latent vector z to produce the quantized latent.

To train with this scalar quantizer, we use a hybrid approach. Some percentage of the time we emu-
late the effect of quantization by adding uniform noise (Brendel et al., 2024), giving an approximate
quantization function:

QL(x) → tanhx+
U{↑1, 1}

L↑ 1
(2)

which contains no explicit quantization. We also utilize use straight-through gradient estimation.
We find that randomly mixing these two approaches along with unmodified latents produces better
performance compared to utilizing only one or the other. This random mixing is achieved by start-
ing with the unmodified latents, then replacing elements according to a random mask derived from a
Bernoulli distribution with a parameter of 0.5. This procedure is performed twice, once for elements
with the straight-through approximation and once with the noise-based approximation. During train-
ing we also randomly select uniformly between a pre-selected set of quantization level numbers L.
This is similar to the quantizer-dropout process used in training RVQ-based bottlenecks, and allows
us to trade-off quality and codebook size at inference time.

3.2.1 POST-TRAINING BOTTLENECK MODIFICATION

The formulation of FSQ used here has many post-training possibilities for adjusting the reconstruc-
tion quality against the number and range of the discrete tokens. Firstly, the regularization provided
by training the FSQ bottleneck with uniform noise allows the number of levels for each dimension
of the FSQ to be modified after training. As long as the number of levels is greater than or equal
to the smallest seen during training, the error produced by the quantization is within the bounds
previously seen and therefore is still valid.

By default FSQ produces one token per time-step. In general this is advantageous for our purposes.
However, if the use-case requires it, we can decompose this single token post-hoc into multiple to-
kens using either a parallel partitioning of the dimensions, or (for particular choices of quantization-
level number) into a hierarchical residual set of tokens ala RVQ. Parallel partitioning introduces a
bi-directional causal relationship between tokens which is unexplored in the generative modeling
context, and therefore for this work we concentrate on the hierarchical residual decomposition.

Residual FSQ can be applied post-hoc to a bottleneck trained with a single quantizer but requires
some restrictions. Namely, is required to only use numbers of levels conforming to L = 2

n
+

1, n ↓ Z+. This sequence of levels can be derived by starting from levels at {↑1, 0, 1} (L =

3), and continually subdividing the intervals between levels exactly at the half way point. These
level configurations are shown up to n = 3 in Tab. 1. We denote the set containing the positions
corresponding to a particular number of levels L, as ωL. We can clearly see by examination that each
larger set is a superset of the previous sets i.e ω2n+1 ↔ ω2n→1+1, and also that we can can construct
any particular set of levels using the Minkowski sum of smaller ω3 sets, progressively halved e.g
ω3 +

ω3
2 ↔ ω5, ω3 +

ω3
2 +

ω3
4 ↔ ω9 (albeit with extraneous new values outside the original range).

A similar analysis holds for other level numbers conforming to the restriction given above, with the
scalings consequently changed. We can utilize this property to do post-hoc residual quantization,
using the standard formulation of a residual quantizer for a given latent z:

ẑ =

K∑

k=0

qk,

q0 = ε0(z),

qk = εk(z↑
k→1∑

i=0

qi) (3)

where qk denote the quantizer outputs, and εk denote the quantizer functions themselves, which we
define in terms of our scalar quantizer function using levels L = 2

n
+ 1, n ↓ Z+, Q2n+1 as:

εk(z) =
Q2n+1((2n)kz)

(2n)k
(4)

5

- We noticed a couple of interesting
properties of FSQ.

- Certain sets of levels are purely
supersets of other sets of levels.

- These sets can be combined with
scaling to produce each other (with
some caveats).

- This property can be used to
decompose single FSQ bottleneck
into residual version, after
training.

PUTTING EVERYTHING TOGETHER

ARCHITECTURE

Encoder DecoderFSQ

ConvConv

Patch Unpatch

Strided
Conv

Gated
MLP

Self
Attn

Layer
Norm

Layer
Norm

- Minimal amount of convolution.

- Needed to mitigate upper limit
on patch size.

- Standard attention blocks with
RoPE + non-causal sliding
window mask.

DATA

- Initially decided to train two variants of model - speech (16kHz mono) and music &
general audio (44.1kHz stereo).

- For speech, keeps things simple by focusing on LibriLight.

- For music + general audio, we can use the same dataset as Stable Audio Open -
Freesound + Free Music Archive

- Modest dataset sizes in both cases.

PROBLEMS
- Zero embedding issue

- First trainings marred with instability unless we aggressively stripped silence from
training data - not practical!

- Traced issue to LayerNorm in transformer - can relax the epsilon to mitigate.

- Powerful transformer decoder likes to over-fit on biases introduced by loss functions.

- STFT loss produces periodic artefacts - de-emphasise it

- Discriminator causes spotty artefacts along predictable grid - examine
discriminator for bias and de-emphasise adversarial component in favour of feature
matching.

DISCRIMINATOR BIAS
- Seems to be present in basically all current discriminator archs (those with MPD are the worst)

- Can be partially mitigated by inharmonically spaced FFT sizes.

BEFORE AFTER

RESULTS OF INITIAL LARGE RUNS
- Speech intelligibility not perfect

- Audio quality very good, but rare phonemes dropped or slurred

- Solution: Finetune model with perceptual loss on decoder output using internal embeddings of WavLM

- Music version too generative

- Musical version of intelligibility problem?

- Audio quality is good, but not possible to evaluate in MUSHRA due to large differences (dropped
instruments, changed timbre etc)

- Drop for future work as we have no strong equivalent of WavLM for music.

Published as a conference paper at ICLR 2025

A APPENDIX: ADDITIONAL RESULTS

We performed a number of additional experiments during the training process of the main presented
model, the results of which are shown here.

A.1 ABLATION ON FINETUNING USING PERCEPTUAL LOSS

Tab. 3 shows objective metrics for the main presented model, before and after the finetuning stage
with using the WavLM perceptual feature-matching loss. As can be seen, this finetuning boosted
sound quality metrics significantly, as well as significantly improving intelligibility – albeit at the
cost of a tiny degradation in SI-SDR.

Model SI-SDR → Mel ↑ STFT ↑ PESQ → STOI →

TAAE 4.73 0.86 1.26 3.09 0.92
w.o. perceptual loss 4.80 1.18 1.59 2.82 0.88

Table 3: Evaluation results for the TAAE model at 700 BPS with and without perceptual loss.

A.2 ABLATION STUDIES ON MODEL SCALING

To evaluate the effect of increasing model size on the performance of the TAAE architecture, we
repeated the 500k step pretraining phase with models of approximately half and one quarter the pa-
rameter count of the main presented model. This is achieved by reducing the transformer embedding
dimension to 768 and 512 respectively, whilst keeping all other hyper-parameters the same. Objec-
tive metrics for the trained models are shown in Tab. 4. We can see that scaling parameter count
shows a clear improvement in objective metrics, although the smaller models still have respectable
performance compared to baselines.

Param. count SI-SDR → Mel ↑ STFT ↑ PESQ → STOI →

240M 3.52 1.24 1.67 2.74 0.87
540M 4.31 1.21 1.66 2.80 0.88
950M 4.80 1.18 1.59 2.82 0.88

Table 4: Evaluation results for TAAE model at 700 BPS with a variety of parameter counts.

A.3 TRAINING MODELS WITH HIGHER COMPRESSION RATES

Tab. 5 shows the objective results of training the same architecture as our main presented model, with
two major changes. The larger block in the encoder/decoder is split into two to provide an extra 2x
upsampling/downsampling, giving an overall latent rate of 12.5 Hz. Additionally the dimension d of
the FSQ bottleneck is increased to 8. The parameter count is the same, apart from a minor difference
in the layers mapping into and out of the bottleneck. This model performs worse than the presented
model (as shown in Tab. 2) in most metrics, albeit operating at a much lower bit-rate. Observation
during training showed that this model converged much slower than the presented model, so this gap
might close with additional training.

Latent (Hz) FSQ (L ↓ d) BPS TPF TPS SI-SDR → Mel ↑ STFT ↑ PESQ → STOI →

12.5

4 ↓ 8 200 1 12.5 ↔1.40 1.26 1.61 2.34 0.82
5 ↓ 8 325 2 25 0.58 1.13 1.49 2.49 0.84
9 ↓ 8 488 3 37.5 2.56 1.05 1.42 2.66 0.87

17 ↓ 8 650 4 50 3.37 1.02 1.40 2.73 0.88

25 6 ↓ 6 400 1 25 3.18 0.97 1.35 2.96 0.90
17 ↓ 6 700 2 50 4.73 0.86 1.26 3.09 0.92

Table 5: Objective results for proposed speech codec models with different latent rate.

14

EVALUATION

OBJECTIVE METRICSPublished as a conference paper at ICLR 2025

Model BPS TPF TPS SISDR → Mel ↑ STFT ↑ PESQ → STOI → MOSNet →

DAC 1000 2 100 ↓6.51 1.49 1.76 1.64 0.75 2.77
2000 4 200 ↓0.37 1.07 1.41 2.29 0.85 2.95

Encodec 1500 2 150 ↓0.22 1.14 1.49 2.36 0.85 2.87
3000 4 300 2.77 0.95 1.33 2.84 0.90 2.98

SpeechTokenizer 1000 2 100 ↓3.30 1.06 1.37 2.41 0.85 2.94
1500 3 150 ↓1.33 0.91 1.25 2.70 0.88 3.10

SemantiCodec 337.5
2

25 – 1.20 1.53 2.21 0.79 3.24
675 50 – 0.98 1.32 2.65 0.86 3.29

Mimi 550 4 50 ↓4.45 1.19 1.55 2.48 0.85 3.11
1100 8 100 2.20 0.94 1.31 3.01 0.90 3.24

TAAE 400 1 25 3.18 0.97 1.35 2.96 0.90 3.36
700 2 50 4.73 0.86 1.26 3.09 0.92 3.36

+ no quant. ↓ ↓ ↓ 5.08 0.85 1.25 3.12 0.92 3.36

Table 2: Evaluation results for objective metrics on speech codec models. We do not report SI-SDR
results for SemantiCodec, as it is a generative model that lacks precise temporal alignment.

Results of the evaluation with the proposed objective metrics are given in Tab. 2. The two variants
of our proposed structure show increased performance against the baselines in all objective metrics,
whilst also being amongst the lowest in terms of bits per second and tokens per second. The residual
variant of our proposed model shows higher performance by these metrics compared to the single-
token and lower bits-per-second variant, but not by a large margin. The variant with FSQ bottleneck
removed, and hence continuous latents, shows modestly boosted performance.

Figure 2: Results of MUSHRA test.

The results of the MUSHRA subjective test, shown in
Fig. 2 indicate that TAAE obtains state-of-the-art results
outperforming, by a significant margin, recently pub-
lished speech codecs. Importantly, the proposed model
obtains results that are close to the ground truth. Com-
paring these evaluation results with the baseline model
sizes shown in Tab. 12 indicates the potential of scal-
ing transformer-based codec architectures to achieve new
benchmarks in terms of speech quality and compression.
Our audio examples are online for listening1.

4.6 ADDITIONAL RESULTS

To evaluate the impact of model size, we conducted scal-
ing experiments with TAAE architectures containing approximately 250M, 500M, and 1B param-
eters. The results confirm that the proposed structure scales effectively with parameter count, as
detailed in Appendix A.2.

We also explored higher compression rates by modifying the encoder/decoder for 2→ additional
up/downsampling (latent rate 12.5 Hz) and increasing the FSQ bottleneck dimension to d = 8.
While this model achieves lower bitrates (e.g., 200 bps), it underperforms the main model and
converges more slowly, as discussed in Appendix A.3.

In Appendix A.4, we describe and evaluate a causal version of the TAAE model. This variant shows
minimal degradation compared to the non-causal version and outperforms the streaming codec Mimi
in objective metrics, despite being trained with significantly fewer steps and data hours.

Additionally, we evaluated our proposed TAAE model across various settings beyond its original
intended use case. In App. A.5, we assess the model performance on a range of languages, demon-
strating its ability to generalize effectively to unseen languages, with results that are better or compa-
rable to models trained on multiple languages. In App. A.6, we validate the model’s generalization
to utterances of varying lengths, including those longer or shorter than seen during training. We also
compare our model with a HuBERT-based codec, analyzing key differences in design and perfor-
mance, as discussed in Appendix A.7.

1
https://stability-ai.github.io/stable-codec-demo/

9

SUBJECTIVE TESTS

Published as a conference paper at ICLR 2025

Model BPS TPF TPS SISDR → Mel ↑ STFT ↑ PESQ → STOI → MOSNet →

DAC 1000 2 100 ↓6.51 1.49 1.76 1.64 0.75 2.77
2000 4 200 ↓0.37 1.07 1.41 2.29 0.85 2.95

Encodec 1500 2 150 ↓0.22 1.14 1.49 2.36 0.85 2.87
3000 4 300 2.77 0.95 1.33 2.84 0.90 2.98

SpeechTokenizer 1000 2 100 ↓3.30 1.06 1.37 2.41 0.85 2.94
1500 3 150 ↓1.33 0.91 1.25 2.70 0.88 3.10

SemantiCodec 337.5
2

25 – 1.20 1.53 2.21 0.79 3.24
675 50 – 0.98 1.32 2.65 0.86 3.29

Mimi 550 4 50 ↓4.45 1.19 1.55 2.48 0.85 3.11
1100 8 100 2.20 0.94 1.31 3.01 0.90 3.24

TAAE 400 1 25 3.18 0.97 1.35 2.96 0.90 3.36
700 2 50 4.73 0.86 1.26 3.09 0.92 3.36

+ no quant. ↓ ↓ ↓ 5.08 0.85 1.25 3.12 0.92 3.36

Table 2: Evaluation results for objective metrics on speech codec models. We do not report SI-SDR
results for SemantiCodec, as it is a generative model that lacks precise temporal alignment.

Results of the evaluation with the proposed objective metrics are given in Tab. 2. The two variants
of our proposed structure show increased performance against the baselines in all objective metrics,
whilst also being amongst the lowest in terms of bits per second and tokens per second. The residual
variant of our proposed model shows higher performance by these metrics compared to the single-
token and lower bits-per-second variant, but not by a large margin. The variant with FSQ bottleneck
removed, and hence continuous latents, shows modestly boosted performance.

Figure 2: Results of MUSHRA test.

The results of the MUSHRA subjective test, shown in
Fig. 2 indicate that TAAE obtains state-of-the-art results
outperforming, by a significant margin, recently pub-
lished speech codecs. Importantly, the proposed model
obtains results that are close to the ground truth. Com-
paring these evaluation results with the baseline model
sizes shown in Tab. 12 indicates the potential of scal-
ing transformer-based codec architectures to achieve new
benchmarks in terms of speech quality and compression.
Our audio examples are online for listening1.

4.6 ADDITIONAL RESULTS

To evaluate the impact of model size, we conducted scal-
ing experiments with TAAE architectures containing approximately 250M, 500M, and 1B param-
eters. The results confirm that the proposed structure scales effectively with parameter count, as
detailed in Appendix A.2.

We also explored higher compression rates by modifying the encoder/decoder for 2→ additional
up/downsampling (latent rate 12.5 Hz) and increasing the FSQ bottleneck dimension to d = 8.
While this model achieves lower bitrates (e.g., 200 bps), it underperforms the main model and
converges more slowly, as discussed in Appendix A.3.

In Appendix A.4, we describe and evaluate a causal version of the TAAE model. This variant shows
minimal degradation compared to the non-causal version and outperforms the streaming codec Mimi
in objective metrics, despite being trained with significantly fewer steps and data hours.

Additionally, we evaluated our proposed TAAE model across various settings beyond its original
intended use case. In App. A.5, we assess the model performance on a range of languages, demon-
strating its ability to generalize effectively to unseen languages, with results that are better or compa-
rable to models trained on multiple languages. In App. A.6, we validate the model’s generalization
to utterances of varying lengths, including those longer or shorter than seen during training. We also
compare our model with a HuBERT-based codec, analyzing key differences in design and perfor-
mance, as discussed in Appendix A.7.

1
https://stability-ai.github.io/stable-codec-demo/

9

- MUSHRA methodology without anchor.

- Approx 25 participants, mostly experts/
researchers.

- Clear preference for our model - very close
to ground truth.

- Preference seems greater than expected from
objective metrics - improvements in naturalness?

REAL OURS 0.4KBS MIMI 0.55KBS

SCALING

Published as a conference paper at ICLR 2025

A APPENDIX: ADDITIONAL RESULTS

We performed a number of additional experiments during the training process of the main presented
model, the results of which are shown here.

A.1 ABLATION ON FINETUNING USING PERCEPTUAL LOSS

Tab. 3 shows objective metrics for the main presented model, before and after the finetuning stage
with using the WavLM perceptual feature-matching loss. As can be seen, this finetuning boosted
sound quality metrics significantly, as well as significantly improving intelligibility – albeit at the
cost of a tiny degradation in SI-SDR.

Model SI-SDR → Mel ↑ STFT ↑ PESQ → STOI →

TAAE 4.73 0.86 1.26 3.09 0.92
w.o. perceptual loss 4.80 1.18 1.59 2.82 0.88

Table 3: Evaluation results for the TAAE model at 700 BPS with and without perceptual loss.

A.2 ABLATION STUDIES ON MODEL SCALING

To evaluate the effect of increasing model size on the performance of the TAAE architecture, we
repeated the 500k step pretraining phase with models of approximately half and one quarter the pa-
rameter count of the main presented model. This is achieved by reducing the transformer embedding
dimension to 768 and 512 respectively, whilst keeping all other hyper-parameters the same. Objec-
tive metrics for the trained models are shown in Tab. 4. We can see that scaling parameter count
shows a clear improvement in objective metrics, although the smaller models still have respectable
performance compared to baselines.

Param. count SI-SDR → Mel ↑ STFT ↑ PESQ → STOI →

240M 3.52 1.24 1.67 2.74 0.87
540M 4.31 1.21 1.66 2.80 0.88
950M 4.80 1.18 1.59 2.82 0.88

Table 4: Evaluation results for TAAE model at 700 BPS with a variety of parameter counts.

A.3 TRAINING MODELS WITH HIGHER COMPRESSION RATES

Tab. 5 shows the objective results of training the same architecture as our main presented model, with
two major changes. The larger block in the encoder/decoder is split into two to provide an extra 2x
upsampling/downsampling, giving an overall latent rate of 12.5 Hz. Additionally the dimension d of
the FSQ bottleneck is increased to 8. The parameter count is the same, apart from a minor difference
in the layers mapping into and out of the bottleneck. This model performs worse than the presented
model (as shown in Tab. 2) in most metrics, albeit operating at a much lower bit-rate. Observation
during training showed that this model converged much slower than the presented model, so this gap
might close with additional training.

Latent (Hz) FSQ (L ↓ d) BPS TPF TPS SI-SDR → Mel ↑ STFT ↑ PESQ → STOI →

12.5

4 ↓ 8 200 1 12.5 ↔1.40 1.26 1.61 2.34 0.82
5 ↓ 8 325 2 25 0.58 1.13 1.49 2.49 0.84
9 ↓ 8 488 3 37.5 2.56 1.05 1.42 2.66 0.87

17 ↓ 8 650 4 50 3.37 1.02 1.40 2.73 0.88

25 6 ↓ 6 400 1 25 3.18 0.97 1.35 2.96 0.90
17 ↓ 6 700 2 50 4.73 0.86 1.26 3.09 0.92

Table 5: Objective results for proposed speech codec models with different latent rate.

14

- We repeated pretraining phase (no WavLM loss) at multiple parameter counts.

- Evidence for improved reconstruction with larger parameter count is clear.

- Our own later experiments, plus work of others, has shown that this type of architecture
scales quite gracefully even to <100M params.

GENERALISATION
Published as a conference paper at ICLR 2025

Model BPS SI-SDR → Mel ↑ STFT ↑ PESQ → STOI →

Italian
Encodec 1500 0.63 1.20 1.55 2.40 0.85

DAC 2000 ↓0.13 1.11 1.46 2.23 0.84
SemantiCodec 675 ↓ 1.05 1.41 2.57 0.84
SpeechTokenizer 1000 ↓2.61 1.07 1.42 2.40 0.84

Mimi 1100 2.69 1.02 1.42 3.00 0.90
TAAE 700 4.54 0.99 1.38 2.89 0.89

Polish
Encodec 1500 1.39 1.12 1.49 2.42 0.86

DAC 2000 1.30 1.02 1.40 2.38 0.87
SemantiCodec 675 ↓ 1.08 1.42 2.36 0.85
SpeechTokenizer 1000 ↓1.70 1.08 1.42 2.36 0.85

Mimi 1100 2.68 1.04 1.46 2.82 0.90
TAAE 700 4.45 0.95 1.36 2.66 0.89

Dutch
Encodec 1500 1.18 1.13 1.51 2.59 0.86

DAC 2000 1.30 0.98 1.36 2.55 0.87
SemantiCodec 675 ↓ 1.09 1.42 2.34 0.83
SpeechTokenizer 1000 ↓5.01 1.09 1.42 2.34 0.83

Mimi 1100 2.84 0.98 1.39 3.01 0.90
TAAE 700 4.03 0.90 1.29 2.93 0.88

French
Encodec 1500 3.12 1.16 1.50 2.51 0.85

DAC 2000 2.68 0.98 1.34 2.41 0.87
SemantiCodec 675 ↓ 1.02 1.36 2.54 0.83
SpeechTokenizer 1000 ↓0.50 1.04 1.36 2.38 0.84

Mimi 1100 4.61 0.98 1.38 2.98 0.89
TAAE 700 6.70 0.94 1.30 2.87 0.88

Portuguese
Encodec 1500 ↓0.46 1.18 1.56 2.49 0.84

DAC 2000 ↓1.05 1.07 1.44 2.35 0.84
SemantiCodec 675 ↓ 1.04 1.42 2.59 0.83
SpeechTokenizer 1000 ↓4.15 1.07 1.42 2.43 0.83

Mimi 1100 1.45 0.98 1.42 3.04 0.89
TAAE 700 3.14 0.93 1.33 2.93 0.87

German
Encodec 1500 0.04 1.17 1.53 2.40 0.84

DAC 2000 ↓0.53 1.09 1.44 2.34 0.85
SemantiCodec 675 ↓ 1.07 1.43 2.31 0.83
SpeechTokenizer 1000 ↓3.86 1.10 1.43 2.31 0.83

Mimi 1100 1.84 1.01 1.42 2.95 0.89
TAAE 700 4.94 0.92 1.32 2.83 0.88

Spanish
Encodec 1500 2.32 1.21 1.54 2.42 0.86

DAC 2000 1.93 1.04 1.39 2.36 0.86
SemantiCodec 675 ↓ 1.04 1.39 2.52 0.84
SpeechTokenizer 1000 ↓0.84 1.07 1.42 2.43 0.85

Mimi 1100 3.82 1.07 1.44 2.93 0.90
TAAE 700 6.15 0.98 1.37 2.80 0.89

Table 7: Evaluation results of objective metrics on the Multilingual LibriSpeech (MLS) dataset.

A.7 COMPARISON WITH HUBERT-BASED CODEC

We compare our approach with an alternative family of speech codecs that leverage discrete (se-
mantic) tokens derived from self-supervised pre-trained speech models (e.g., HuBERT (Hsu et al.,
2021)). These tokens are subsequently used by a generative model to resynthesize the wave-
form. In this study, we employ the pre-trained unit-based HiFi-GAN vocoder (Kong et al., 2020)
model (unitHiFi-GAN), as used in SpeechGPT2, to resynthesize waveforms discrete tokens from
HuBERT-base model (95 M). The unitHiFi-GAN operates on HuBERT representations with a la-
tent rate of 50 Hz for 16 kHz speech signals and utilizes a k-means clustered codebook with 1000

entries, resulting in an effective bitrate of 500 bps for 16 kHz speech. We apply unitHiFi-GAN
to resynthesize the audio in the test set and report objective metrics to compare its performance
with that of our proposed TAAE models. Results are shown in Table 8. We observe that unitHiFi-

2
https://github.com/0nutation/SpeechGPT/blob/main/speechgpt/utils/

vocoder/

16

- Reviewers expressed concern about English-
only dataset and possibility of overfitting.

- To test this, we evaluated on Multilingual
LibriSpeech.

- Results show decent generalisation to other
languages - matching some baselines which are
trained on multilingual datasets.

REAL OURS 0.7KBS MIMI 1.1KBS

POST-PAPER WORK

TTS EXPERIMENTS / WEIGHTS RELEASE
- We wanted to release the model weights publicly for others to experiment with, so we made some

tests with most common downstream task - TTS

- Naive LM approach had difficulty modelling token stream well.

- Some precedent with this in literature.

- How can we improve this?

- Finetuned model further to regress force-aligned phonemes from bottleneck latents using CTC
head.

- Significant improvement for TTS, slightly damages reconstruction metrics - some
reports in the wild of it damaging generalization.

- Released two versions of model, `stable-codec-speech-16k`with CTC, and `stable-codec-
speech-16k-base` without. Available on 🤗.

https://huggingface.co/stabilityai/stable-codec-speech-16k

LIMITATIONS / LEARNINGS / FUTURE WORK

- Directly passing a real world signal into a transformer will always present difficulties.

- A very powerful decoder can present problems as well as advantages.

- How can this arch work properly with music (watch this space).

- How can we eliminate the last elements of convolution?

- Relatively small dataset + large param count means that there’s still the possibility that existing
model is overfit. Future work should scale up data.

- Is FSQ the best practical choice? Not sure. It’s great for optimising reconstruction/bit, but might
not be the most practical downstream.

QUESTIONS?

