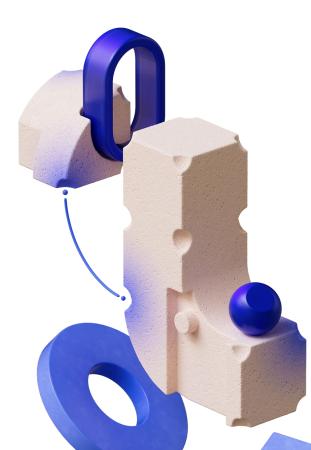
Google DeepMind



Improving Multilingual Speech Recognition and Language Identification

Min Ma Research Scientist

April 2025

Multilingual ASR with Semi-supervised Learning

Reimagining Babel: The AI-Powered Ascent to Universal Understanding

Rebuilt Babel Tower in 21st Century?

- The World's Linguistic Landscape:
 - <u>7,164</u> living languages so far
 - <u>3,866</u> languages uses an established writing system
- The Digital Babel: a *universal* automatic speech recognition (ASR) system that transcribes speech from *any language*
 - a. Algorithms: Deep Learning
 - b. Data: Massive Datasets
 - c. Compute: GPU/TPU-Accelerated Computing"

Digital Babel: Massively Multilingual Speech Recognition as Foundation

Imaging it works:

- Seamlessly:
 - Multilingual speech recognition
 - Multilingual speech translation
 - Multilingual speech understanding
 - Multilingual speech synthesis
 - o ...
- Let's start with Massively Multilingual Automatic Speech Recognition:
 - Feed all the data in!
 - Wait, we also need effective model architecture and learning algorithm

Multilingual Speech Recognition Overview

• Challenges:

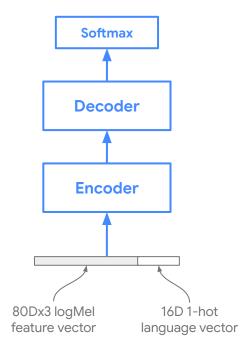
- Building Automatic Speech Recognition (ASR) models across many languages is difficult due to large variations and heavily unbalanced data.
- While multilingual models often help low-resource languages through positive transfer, high-resource languages frequently experience performance degradation.
- This degradation is often caused by interference from diverse multilingual data and reduced capacity per language.

Dataset Overview:

- **Scale:** 15 languages from 9 distinct families.
- Size: Data per language varied significantly, from 7.6K to 53.5K hours.
- **Total:** 359.2K hours of speech data (over 231 million utterances). This scale poses a challenge for multilingual models to outperform strong monolingual baselines.

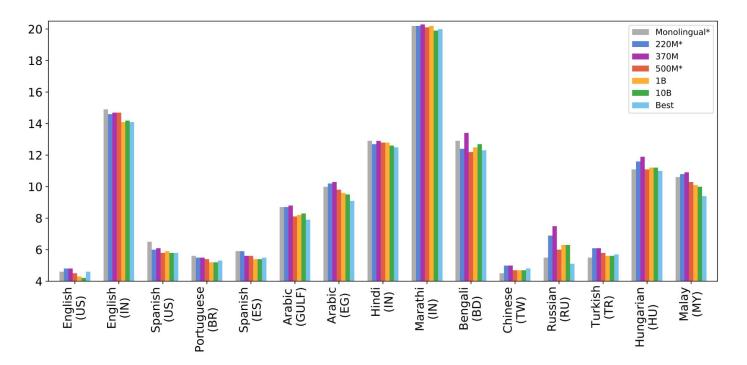
Multilingual Speech Recognition Model Architecture

- 1-hot LangID as additional input
- Conformer Encoder
 - full-context
 - 2X time reduction
- Transformer Decoder
 - masked self-attention
 - cross attention to encoder



Multilingual Speech Recognition Evaluation

• A single multilingual model with average word error rate (WER) of 8.9% vs. 15 mono models' 9.3%



Increasing Model Capabilities Can Help

• Adding depth works better than width

- deeper encoder is better.
- deeper decoder is better.
- increase both with more on depth does the best.

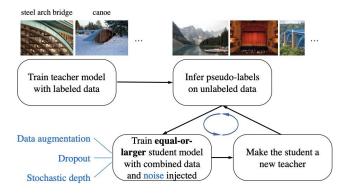
Remaining Questions

Lack of supervised speech data:

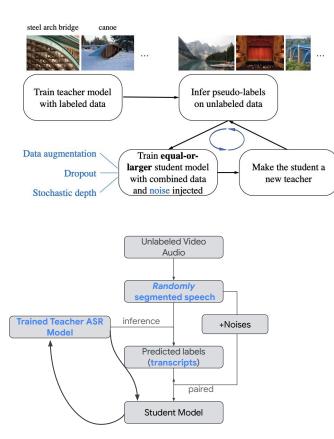
• High-performing multilingual ASR systems typically require vast amounts of labeled data (transcribed audio).

- Creating large labeled datasets is expensive, time-consuming, and often a barrier to progress, especially for diverse domains and languages
 - Idea 1: can we convert unlabeled speech \rightarrow labeled speech automatically?
 - Idea 2: can we change the way of learning from unlabeled speech?

Idea 1: Noisy Student Training (with augmented speech segments)

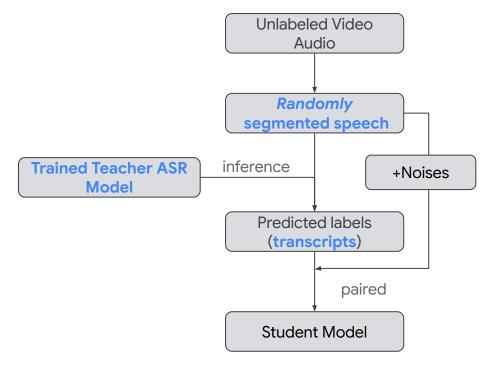


Noisy Student Training (with augmented speech segments)



- Iterative Self-Training: uses unlabeled data through sequential teacher-student model training.
- Teacher-Student Framework:
 - Teacher: Generates pseudo-labels on unlabeled data from clean input.
 - Student: Trained on these labels with **heavy** data augmentation.
- Robustness via Augmentation: Student learns to handle noisy/varied inputs, improving generalization.
 - <u>SpecAugment</u>.

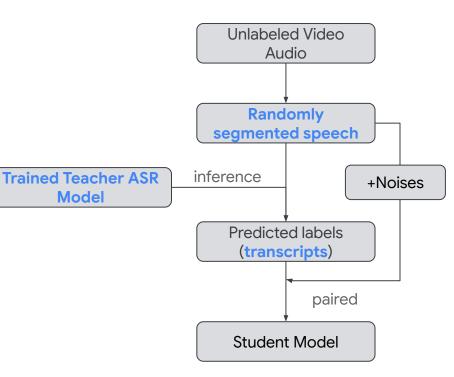
Idea 1: can we convert unlabeled speech \rightarrow labeled speech automatically



- **Iterative Self-Training:** uses unlabeled data through sequential teacher-student model training.
- Teacher-Student Framework:
 - Teacher: Generates pseudo-labels on unlabeled data from clean input.
 - Student: Trained on these labels with **heavy** data augmentation.
- **Robustness via Augmentation:** Student learns to handle noisy/varied inputs, improving generalization.
 - <u>SpecAugment</u>.
- Pseudo-Label Quality:
 - Filtering: Low-confidence labels are removed.
 - Balancing: Label distribution matches labeled data.
- **Benefit:** Improved ASR accuracy and robustness by effectively utilizing unlabeled data through augmented self-training with quality control.

What would the Noisy Student Training enable us to do?

- Reduced requirement of large amount of human transcribed speech
 - Especially valuable for **low-resource speech**.
 - Technically, all the available unlabeled speech can be used to train student model.
- Enabled heterogeneous model architectures of teacher vs. student models
 - Teacher can be non-streaming ASR model, while student can be streaming.
 - Less latency.
 - On-device model serving.
 - Implicitly knowledge transfer from full context representations learned by teacher model.

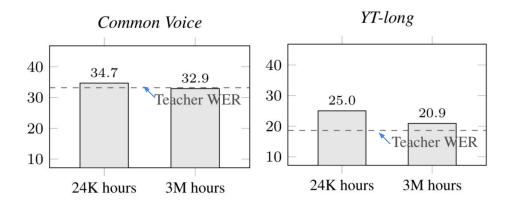


Experimental Results

On monolingual language:

Short-form speech

Long-form speech



Experimental Results

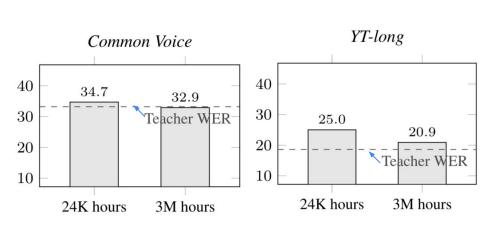
On monolingual language:

Short-form speech

Long-form speech

Scaling up for multiple languages:

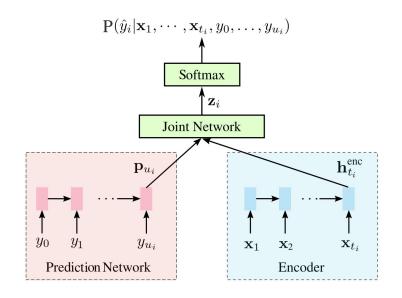
Language	Test Sets	Streaming Baseline	Non-Streaming teacher model	Streaming student model
French	YT-long Common Voice	34.5 36.2	18.6 33.2	25.0 34.7
Spanish	YT-long Common Voice	35.9 22.0	18.6 11.2	28.0 16.5
Portuguese	YT-long Common Voice	30.8 30.9	22.8 25.8	28.3 28.9
Italian	YT-long Common Voice	24.0 30.0	16.2 27.3	20.8 23.6



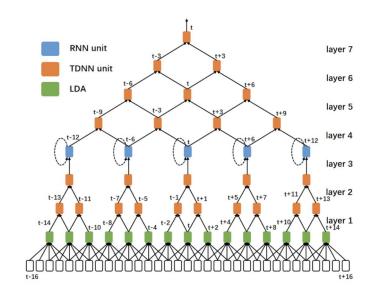
Analysis of different teacher models

Popular ASR Model Architectures:

• Recurrent Neural Network Transducer (RNN-T)

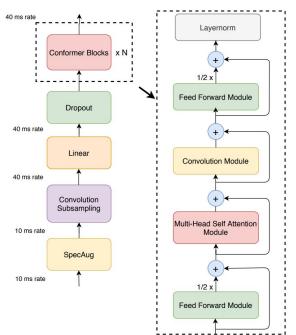


• Time Delay Neural Network (TDNN)

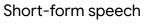


Analysis of different teacher models

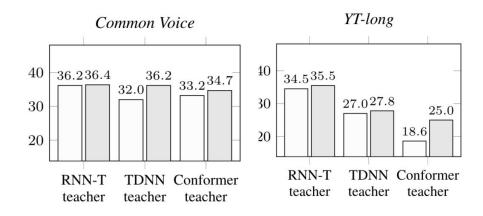
Popular ASR Model Architectures (cont.):



Exploring different teacher models:



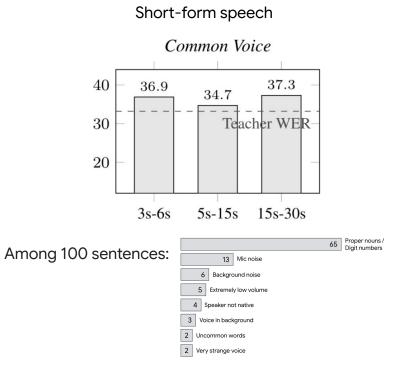
Long-form speech



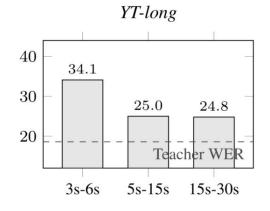
Conformer:

Sensitivity Analysis of WER w.r.t. duration range of random segments

Exploring different teacher models:



Long-form speech



WER (del/ins/sub)

34.1	25.0	24.8
(13.4/4.4/16.3)	(13.4/2.6/9.0)	(12.5/2.7/9.6)

Idea 2: can we change the way of learning from unlabeled speech?

Improved training recipe (BigSSL):

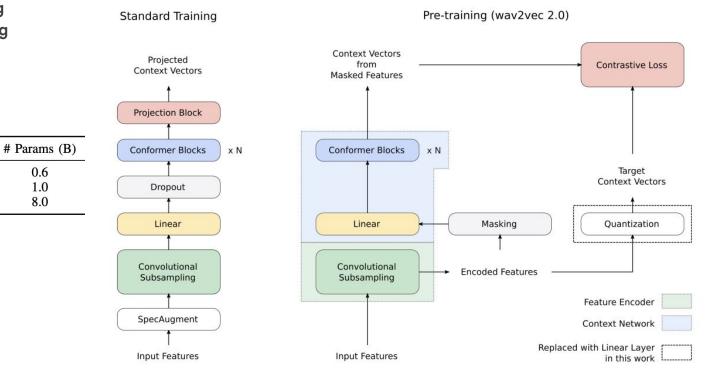
- Pre-training
- Self-training
- Scaling

Model

Conformer XL

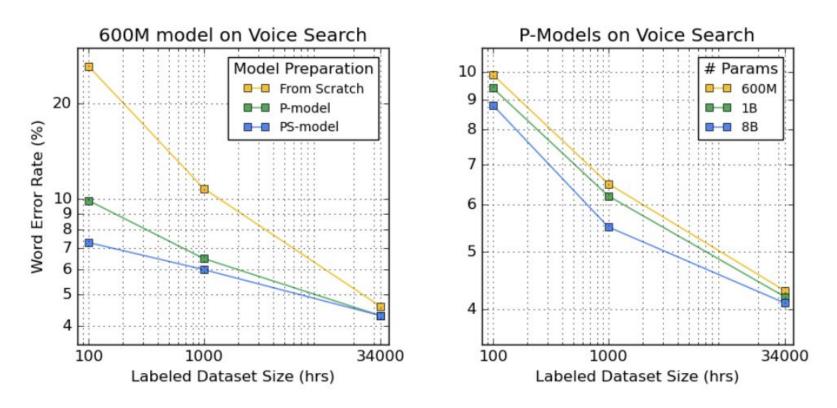
Conformer G

Conformer XXL



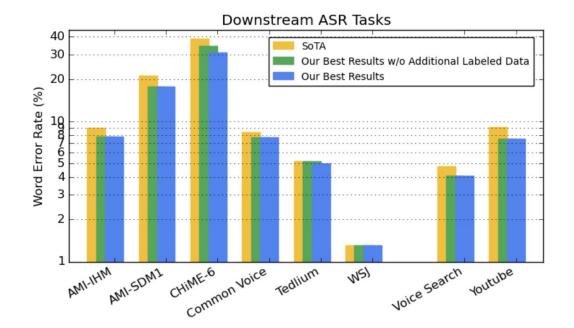
The **BigSSL** Results: Pre-training, Self-training, and Scaling

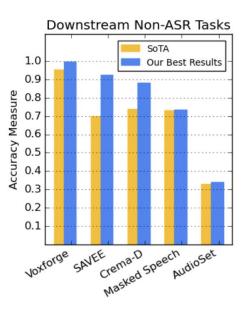
Improvements w.r.t. training strategies, model capability, and labeled dataset size



The **BigSSL** Results: Pre-training, Self-training, and Scaling

Improved ASR and Beyond:





The **<u>BigSSL</u>** Application: Streaming Model Serving

The fine-tuned PS-model is used to generate NST data for training the student streaming model:

Model	Fine-tur	ing Mixt	Test-short	Test-long	
	Telephony	Video	NST		
Streaming Model					
Baseline	N/A	N/A	N/A	33.11	15.53
Fine-tuned	1.0	-	N/A	22.45	21.41
	0.8	0.2	N/A	22.64	19.99
ConformerXL-RNNT-P	0.8	0.2	N/A	22.24	14.55
ConformerXL-RNNT-PS					
Baseline	N/A	N/A	N/A	27.20	10.97
Fine-tuned	0.8	0.2	N/A	21.24	10.72
Student Streaming Model	0.8	8 -1	0.2	22.97	16.75

Recap of Section 1:

Multilingual Self-Supervised Learning (SSL) is just as successful in speech understanding [...In particular, on an ASR task with 34k hours of labeled data, by fine-tuning an 8 billion parameter pre-trained Conformer model we can match state-of-the-art (SoTA) performance with only **3%** of the training data and significantly improve SoTA with the full training set...]

Multilingual Data & Evaluation

How can we evaluate pretrained models in over 100+ languages?

Our desiderata for spoken language technologies evaluation:

- **Rich:** N-way parallel permits comparison across languages.
- **Robust:** High domain coverage
- **Realistic:** Natural read-speech, not synthesized
- Ready: Standardized splits for train/dev/test

Closest pre-existing datasets:

- **CMU Wilderness** (700 languages, but narrow Bible domain coverage, segments not parallel)
- **CommonVoice** (93 languages with transcripts, but not parallel)

When it comes to Multilingual Speech Data:

Dataset	#Languages	Total Duration	Domains	Speech Type	Transcripts	Parallel text	Parallel speech
BABEL [13]	17	1k hours	Conversational	Spontaneous	Yes	No	No
CommonVoice [12]	93	15k hours	Open domain	Read	Yes	No	No
CMU Wilderness [15]	700	14k hours	Religion	Read	Yes	Yes	Yes
MLS [8]	8	50.5k hours	Audiobook	Read	Yes	No	No
CoVoST-2 [11]	22	2.9k hours	Open domain	Read	Yes	Yes	No
Voxlingua-107 [14]	107	6.6k hours	YouTube	Spontaneous	No	No	No
Europarl-ST [16]	6	500 hours	Parliament	Spontaneous	Yes	Yes	No
MuST-C [17]	9	385 hours	TED talks	Spontaneous	Yes	Yes	No
mTEDx [18]	9	1k hours	TED talks	Spontaneous	Yes	Yes	No
VoxPopuli [9]	24	400k hours	Parliament	Spontaneous	Partial	Partial	Partial
CVSS [19]	22	1.1k hours	Open domain	Read/Synthetic	Yes	Yes	Yes

Table 1: Compare FLEURS to common public multilingual speech benchmarks.

When it comes to Multilingual Speech Data:

Dataset	#Languages	Total Duration	Domains	Speech Type	Transcripts	Parallel text	Parallel speech
BABEL [13]	17	1k hours	Conversational	Spontaneous	Yes	No	No
CommonVoice [12]	93	15k hours	Open domain	Read	Yes	No	No
CMU Wilderness [15]	700	14k hours	Religion	Read	Yes	Yes	Yes
MLS [8]	8	50.5k hours	Audiobook	Read	Yes	No	No
CoVoST-2 [11]	22	2.9k hours	Open domain	Read	Yes	Yes	No
Voxlingua-107 [14]	107	6.6k hours	YouTube	Spontaneous	No	No	No
Europarl-ST [16]	6	500 hours	Parliament	Spontaneous	Yes	Yes	No
MuST-C [17]	9	385 hours	TED talks	Spontaneous	Yes	Yes	No
mTEDx [18]	9	1k hours	TED talks	Spontaneous	Yes	Yes	No
VoxPopuli [9]	24	400k hours	Parliament	Spontaneous	Partial	Partial	Partial
CVSS [19]	22	1.1k hours	Open domain	Read/Synthetic	Yes	Yes	Yes
FLEURS (this work)	102	1.4k hours	Wikipedia	Read	Yes	Yes	Yes

Table 1: Compare FLEURS to common public multilingual speech benchmarks.

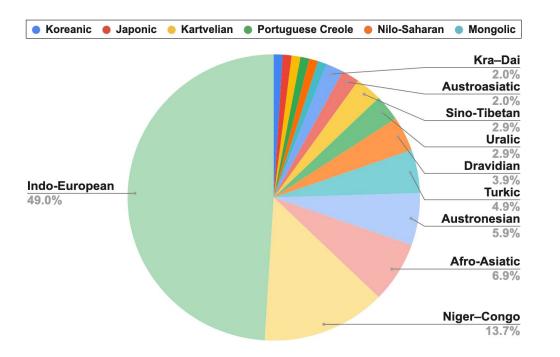
FLEURS-102 is based on FLORES-101.

- 102 language n-way parallel speech & text dataset
- ~12 hours per language
- Open-domain (text from Wikipedia)
- **Natural read-speech** no TTS/synthesized speech
- Balanced speaker gender distribution across the dataset

and

- **Pre-split into train/dev/test** with a target ratio 7:1:2
- Easily accessible through

102 Languages across 16 Language Families



- Western European (WE)
- Eastern Europe (EE)
- Central-Asia/Middle-East/North-Africa (CMN)
- Sub-Saharan Africa (SSA)
- South Asia (SA)
- South-East Asia (SEA)
- Chinese, Japanese, and Korean languages(CJK)

Evaluation of Key Tasks enabled by FLEURS

• FLEURS-102 enables evaluation of many spoken language technologies tasks:

Language ID

Speech Recognition

Speech Translation

Retrieval

Automatic Speech Recognition

- Speech-only pre-training outperforms Multimodal pre-training:
 - **12.9 CER** vs **13.4 CER** (w2v-BERT vs mSLAM).
- Languages seen in pre-training yield better results at test time.
- Good performance for zero-shot languages with related languages in pre-training.
 - Malayalam: 8.6 CER
 - Kannada: 7.0 CER
 - Gujarati: 9.3 CER

w2v-BERT: Chung et al., 2021 mSLAM: Bapna et al., 2022

Speech Language Identification

- Multimodal pre-training outperforms speech-only pre-training:
 - **73.3%** vs **71.4%** avg accuracy (mSLAM vs w2v-BERT).
- Most Challenging: South Asian languages!
- Good mSLAM performance for zero-shot languages with related languages in pre-training.
 - **Luxembourgish : 96.90%** (Dutch, French, German in pre-training).
 - Korean: 95.29% (Japanese, Cantonese, Mandarin in pre-training).
 - Filipino: 75% (Cebuano and Indonesian in pre-training).

Cross-Modal Speech-Text Retrieval

- We present a new task of cross-modal speech-text retrieval
 - **Speech-to-Text Retrieval task**: given audio, retrieve its most probable transcription
 - **Text-to-Speech Retrieval task**: given a text, retrieve the closest audio

- Multimodal models are good at retrieving the correct transcript or speech utterance
 - Precision@1 for Speech to Text Retrieval: **76.9**
 - Precision@1 for Text to Speech Retrieval: **74.4**

The Need for Cross-Lingual Speech Understanding

Design of benchmark:

- Task Families & Examples:
 - **Recognition:** Multilingual LibriSpeech (MLS), CommonVoice, BABEL.
 - **Classification:** VoxLingua107 (language identification), VoxCeleb (speaker identification).
 - Translation: CoVoST 2 (speech-to-text translation).
 - **Retrieval:** FLEURS-S (speech-to-speech retrieval).
- Baselines:
 - The paper establishes the first comprehensive baselines using:
 - **XLS-R:** A large-scale speech-only pre-trained model.
 - **mSLAM:** A model pre-trained on both speech and text data.
- Accessibility:
 - All datasets and fine-tuning scripts are readily available through the **Hugging Face platform**.
 - This ease of access encourages wider adoption and faster iteration in the research community.

<u>XTREME-S</u>: The Cross-Lingual Evaluation Benchmark

- XTREME-S evaluates multilingual representation learning in 100+ languages.
- Includes FLEURS: a new 102-language n-way parallel speech dataset.

Speech Recognition

- <u>FLEURS</u>: 102 European languages, 1000h for training, read-speech.
- <u>MLS</u>: 8 European languages, 10h training, read-speech (books).
- <u>VoxPopuli</u>: 16 languages, 500h for high-res, 1-10h for low-resource sessions.

Speech Translation

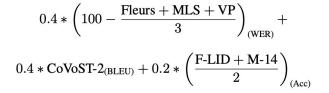
• <u>CoVoST-2</u>: 21 XX->En language pairs, 264h Fr->En, 1h Ja->En, read-speech (Wiki).

Speech Classification

- <u>MInds-14</u>: 14 languages, Intent classification, 50h, commercial system in e-banking.
- <u>FLEURS</u>: LangID classification.

Speech Retrieval

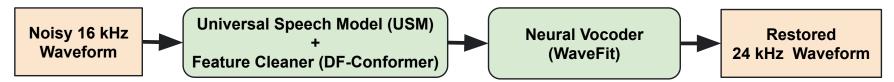
• <u>FLEURS</u>: speech-text retrieval.



FLEURS-R

- Motivations:
 - **Cleaner Speech**: Natural read-speech, polished by speech restoration algorithm + ASR filter.
 - **Competitive Benchmarks** for multilingual TTS.

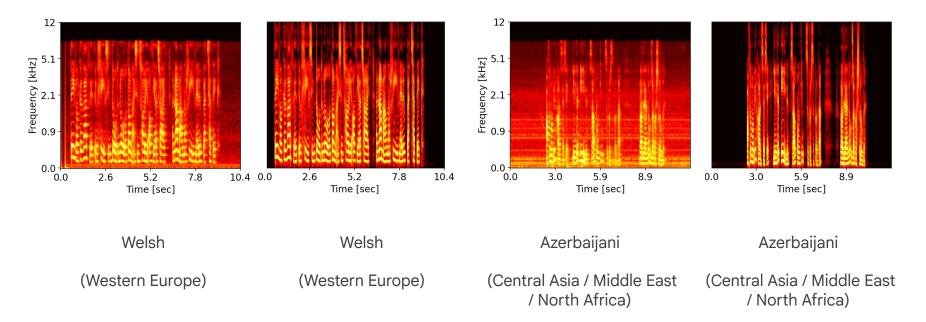
Miipher: Parametric re-synthesis style (TTS-like) speech restoration model



- wav2vec-BERT encoder has been replaced by USM to support multilingual and unknown languages.
 - USM encoder pre-trained over 300 languages, consists of 32 layers (2B params).
- Used intermediate features from 13th layer.
- Feature cleaner and WaveFit trained on 54 locales noisy-clean paired data.
- Not fine-tuned, to preserve *speaker* acoustic characteristics.
- No extra conditionings or extra encoders, *i.e.* no speaker and PnG-BERT text encoders.

<u>Miipher</u> Restoration Performance Visualization

• Before/after examples for unknown languages in FLEURS dataset (unknown: no noisy-clean paired data exists).



Evaluation Metrics

- Semantic Correctness:
 - Evaluated by character error rate (CER).
 - Inference made by a grapheme ASR model (<u>Maestro-U</u>).

- Naturalness of Synthesized Speech:
 - Challenging to obtain human ratings of synthesized speech across 102 languages efficiently and effectively.
 - Evaluated by automatic approximation of Mean Opinion Score, which was predicted by an existing model <u>SQuId</u>.
 - SQuId was pre-trained in 101 text languages and 51 spoken languages, followed by decoder trained on MOS ratings (by humans) in 42 locales.

Experiments

- Better speech restored by Miipher:
 - Maintained CER when decoding FLEURS-R and FLEURS by the same ASR model.
 - Improved SQuId scores for naturalness:
 - 3.72 on FLEURS test.
 - **3.92** on FLEURS-R test
- TTS Benchmark:
 - Trained a TTS model (<u>Virtuoso 2</u>) on original FLEURS speech as a baseline.
 - Trained Virtuoso 2 on FLEURS-R for comparison.
 - Two types of synthesized speech by two TTS models decoded on their test splits:
 - Improved SQuId scores for naturalness:
 - 3.79 by TTS(FLEURS).
 - **3.89** by TTS(FLEURS-R)
 - CER: both got worse CERs, which might due to the ASR model did not adapt to the synthesized data.

Recap of Section 2

- You can use FLEURS-102 for robust multilingual eval for many speech technologies!
- **Rich:** N-way parallel permits comparison across languages.
- **Robust:** High domain coverage
- Realistic: Natural read-speech, not synthesized
- **Ready:** Standardized splits for train/dev/test
- Dataset Available on Hugging Face and Tensorflow

https://huggingface.co/datasets/google/fleurs https://www.tensorflow.org/datasets/catalog/xtreme_s https://huggingface.co/datasets/google/fleurs-r

Multimodality for Multilingual ASR and LangID

XLS-R: Multilingual Wav2vec 2.0 at Scale

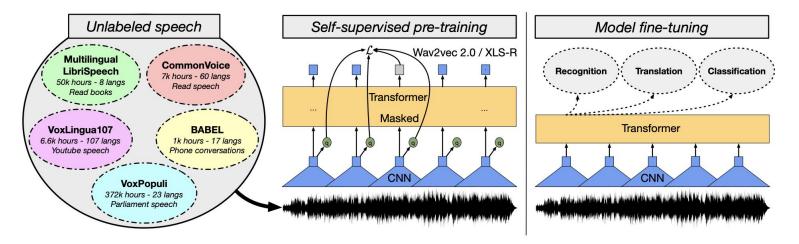


Figure 1: **Self-supervised cross-lingual representation learning.** We pre-train a large multilingual wav2vec 2.0 Transformer (XLS-R) on 436K hours of unannotated speech data in 128 languages. The training data is from different public speech corpora and we fine-tune the resulting model for several multilingual speech tasks.

• Big gains on Translation, Recognition and Classification.

mSLAM: Multilingual Speech+Text Pre-training

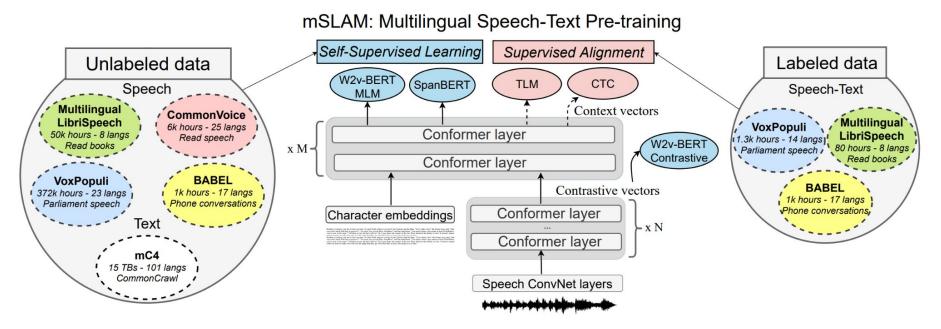


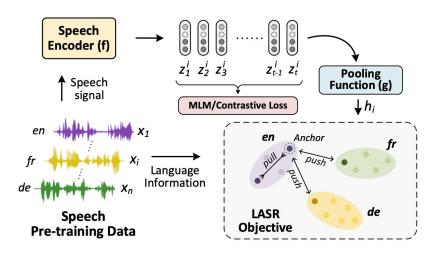
Figure 1: Multilingual Speech-Text Pretraining We pre-train a large multilingual speech-text Conformer on 429K hours of unannotated speech data in 51 languages, 15TBs of unannotated text data in 101 languages, as well as 2.3k hours of speech-text ASR data.

Pre-training Objectives

- Pre-trained to optimize:
 - <u>SpanBERT</u> loss: on unlabeled text, from masked language modeling (MLM) task;
 - <u>w2v-BERT</u> loss: on unlabeled speech, from MLM of discretized acoustic tokens;
 - <u>TLM</u> loss: on paired speech-text, from two MLM tasks to predict masked text or speech, given concatenated speech and text.
 - STM loss: on paired speech-text and non-paired speech-text, from a binary classification to decide if input speech-text is matched or not.
- Gains:
 - Significant improvements on semantic speech tasks Speech translation, Speech intent classification, Speech LangID and text classification tasks.

What if Including LangID into Pre-training?

- Label Aware Speech Representation
- To include both Semantic & Non-Semantic Objectives during Pre-training for Learning Universal Speech Encoders.



$$\mathcal{L}_{\text{tri}} = \sum_{i} \max\left[0, \gamma + d(\boldsymbol{h}_{i}, \boldsymbol{h}_{i}^{+}) - d(\boldsymbol{h}_{i}, \boldsymbol{h}_{i}^{-})\right], \quad (1)$$

$$\mathcal{L}_{\text{hard}} = \sum_{i} \max[0, \gamma + \max_{j \in i^{+}} d(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}) - \min_{j \in i^{-}} d(\boldsymbol{h}_{i}, \boldsymbol{h}_{j})] \quad (2)$$

$$\mathcal{L}_{\text{hard}} = \mathcal{L}_{\text{hard}} = \mathcal{L}_{\text{hard}} \quad (3)$$

$$\mathcal{L}_{LASR} - \mathcal{L}_{SSL} + \Lambda \cdot \mathcal{L}_{hard}.$$
 (3)

$$\mathcal{L}_{ge2e} = \sum_{i} 1 - \sigma(\max_{j \in i^+} d(\boldsymbol{h}_i, \boldsymbol{h}_j)) + \sigma(\min_{j \in i^-} d(\boldsymbol{h}_i, \boldsymbol{h}_j)).$$
(4)

LASR helps LangID

Method	Accuracy
MLM	75.8
Hard-Triplet	74.3
MLM + Triplet (Eq. 1)	75.1
MLM + GE2E (Contrastive) (Eq. 4)	76.2
MLM + Hard-Triplet (Eq. 2)	80.4

Method	Languages						
	de	en	es	fr	it	nl	
w2v-BERT	4.0	6.2	4.0	4.7	8.9	10.6	7.2
+ LASR	4.0	6.2	4.8	4.8	8.9	10.0	7.2
BEST-RQ	3.9	6.2	3.8	4.8	8.8	9.3	7.0
+ LASR	4.1	6.2	4.3	4.8	9.0	9.6	7.1

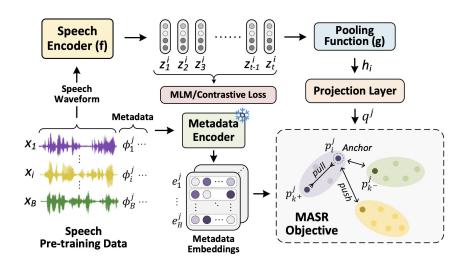
$$\mathcal{L}_{\text{tri}} = \sum_{i} \max\left[0, \gamma + d(\boldsymbol{h}_{i}, \boldsymbol{h}_{i}^{+}) - d(\boldsymbol{h}_{i}, \boldsymbol{h}_{i}^{-})\right], \quad (1)$$
$$\mathcal{L}_{\text{hard}} = \sum_{i} \max[0, \gamma + \max_{j \in i^{+}} d(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}) - \min_{j \in i^{-}} d(\boldsymbol{h}_{i}, \boldsymbol{h}_{j})] \quad (2)$$

$$\mathcal{L}_{\text{LASR}} = \mathcal{L}_{\text{SSL}} + \lambda \cdot \mathcal{L}_{\text{hard}}.$$
 (3)

$$\mathcal{L}_{ge2e} = \sum_{i} 1 - \sigma(\max_{j \in i^+} d(\boldsymbol{h}_i, \boldsymbol{h}_j)) + \sigma(\min_{j \in i^-} d(\boldsymbol{h}_i, \boldsymbol{h}_j)).$$
(4)

Generalize LangID Label to Multi-Labels

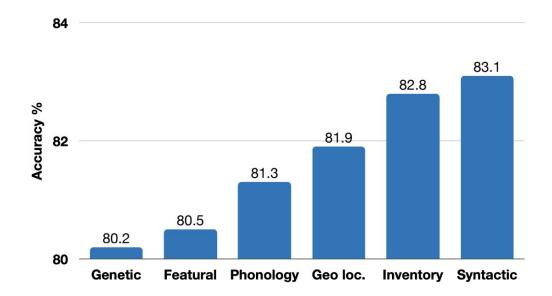
- MASR: MULTI-LABEL AWARE SPEECH REPRESENTATION
- To include multiple meta-labels and soft similarity for the purpose of speech representation learning.



- A metadata encoder: leverages external knowledge resources to generate a representation for each type of metadata.
- A projection layer: integrates multiple types of metadata information.
 - a metadata-specific transformation function.
 - concatenating the metadata encoder and the projection layer outputs.

Various Lang2vec representations for LangID

• Defined by <u>Littell et al.</u>, we experimented with syntactic, geographic, phonetic, featural, genetic and inventory based embeddings.



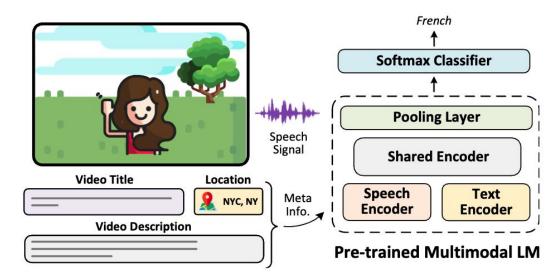
MASR helps LangID and other Non-semantic Tasks

	FLEURS					Dhwani				
Method	O (48)	NO (54)	Overall		O (5)	NO (17)	Overall		1	
	Acc	Acc	Acc	F1	EER↓	Acc	Acc	Acc	F1	EER↓
w2v-BERT [21] + LASR [19] + MASR	87.7 88.9 91.4	69.6 74.3 76.3	78.0 81.3 83.4	77.7 80.4 81.3	0.5 0.5 0.4	78.8 78.1 81.0	49.9 52.2 52.4	58.0 59.5 60.7	42.6 44.2 46.2	15.4 15.2 15.3
BEST-RQ [10] + LASR [19] + MASR	85.6 90.6 91.3	65.2 73.4 74.6	75.4 81.6 83.7	72.8 79.7 81.5	0.9 0.5 0.3	76.2 77.0 80.6	46.4 48.6 50.6	54.7 57.7 59.6	39.8 43.0 44.2	16.9 16.1 15.8

Method	LangID	Speaker Verification	Emotion Recogition	Audio Classification		
	VoxForge	ASVSpoof2019	Iemocap	Mask Challenge	Esc50-human	Esc50-cough
BEST-RQ [10]	94.6	94.0	54.0	61.1	72.0	90.9
+ LASR	96.0	97.9	60.7	58.1	63.6	87.9
+ MASR	94.0	94.3	60.0	63.0	80.3	94.0
+ GeoMASR	95.7	96.1	58.8	62.2	81.8	92.5
+ TextMASR	90.8	93.2	57.5	61.2	81.8	87.9

Massively Multimodal Language Identification

- An end-to-end language identification model that captures signals from multiple modalities.
- Side information were encoded with text encoder.
- +7% improvement over speech language identification.



Confidential - Google DeepMind

Thank you.

Google DeepMind