

Singing Voice Synthesis: Data Curation, Modeling, and Evaluation

Jiatong Shi jiatongs@cs.cmu.edu

About Me

- 4th Year Ph.D. Student
- Main research focus:
 - speech representation learning and its application
- Broad interests in many downstream tasks:
 - Typical speech tasks: ASR & TTS & ST & SLU
 - Architectures
 - Decoding
 - Aspects in low-resource and multilingual
 - Related music tasks
 - Singing voice synthesis
 - Singing voice conversion
 - Music generation
 - Recent focus:
 - Speech, music, and general audio evaluation

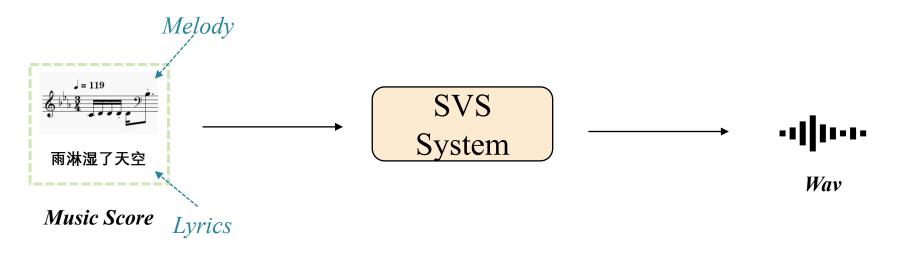
Jiatong ftshijt

Content

- Singing Voice Synthesis (SVS), an Overview
- Data Curation for SVS
 - Introduction to ACE-Opencpop and ACE-KiSing (Interspeech 2024)
- Modeling for SVS (Discrete SVS)
 - TokSing
 - Multi-resolution discrete token learning: SingOMD
- Evaluation for SVS
 - SingMOS
 - VERSA

Singing Voice Synthesis (SVS)

• Utilize music score (i.e., melody and lyrics) to synthesize voice



The Format of Music Score

- Music Note
- Lyrics (in syllables?)
- Duration

Twinkle Twinkle					
Twin - kle, twin -	F C kle, 1it - tle star,	F C How I won	G7 C		
C F Up a - bove the	C G7	C F Like a dia - mo	C G7		
C Twin - kle, twin - kle,	F C	F C How I won - d	G7 C		
() :					

Download from <u>https://www.music-for-music-</u> <u>teachers.com/twinkle-twinkle.html</u> (free for educational purpose)

Arrangement Copyright © 2015 Music-for-Music-Teachers.com All Rights Reserved

Challenges in SVS

- Data Curation \rightarrow More data!
- Modeling \rightarrow Better modeling!
- Evaluation \rightarrow Easier and comprehensive evaluation!

Data Curation

Singing Voice Data Scaling-up: An Introduction to ACE-Opencpop and ACE-KiSing

Jiatong Shi¹*, Yueqian Lin², Xinyi Bai³⁴, Keyi Zhang, Yuning Wu⁵, Yuxun Tang⁶, Yifeng Yu⁵, Qin Jin⁵, Shinji Watanabe¹

¹ Carnegie Mellon University, ² Duke Kunshan University, ³ Cornell University,
 ⁴ Multimodal Art Projection Community, ⁵ Renmin University of China, ⁶ Georgia Institute of Technology

- Compared to text-to-speech (TTS), SVS naturally has its difficulties in data collection:
 - Stricter usage guidelines and copyright concerns
 - Requires a professional, high-quality recording environment
 - Takes longer to record
 - Requires detailed annotations (e.g., music score, lyrics alignment)

- Compared to text-to-speech (TTS), SVS naturally has its difficulties in data collection:
 - Stricter usage guidelines and copyright concerns
 - Requires a **professional**, high-quality recording environment
 - Takes longer to record
 - Requires detailed annotations (e.g., music score, lyrics alignment)

- Compared to text-to-speech (TTS), SVS naturally has its difficulties in data collection:
 - Stricter usage guidelines and copyright concerns
 - Requires a professional, high-quality recording environment
 - Takes longer to record
 - Requires detailed annotations (e.g., music score, lyrics alignment)

- Compared to text-to-speech (TTS), SVS naturally has its difficulties in data collection:
 - Stricter usage guidelines and copyright concerns
 - Requires a professional, high-quality recording environment
 - Takes longer to record
 - Requires **detailed** annotations (e.g., music score, lyrics alignment)

Real-world Production of Singing voice

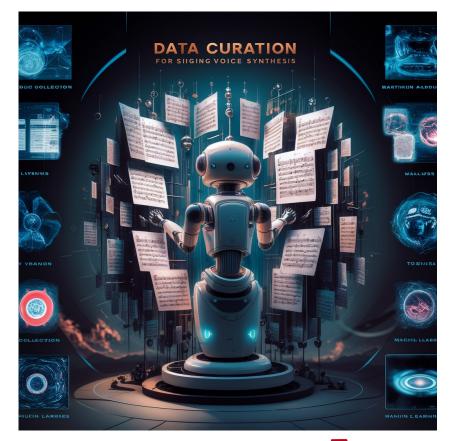
- In real-world music production,
 - the singing voice is usually NOT used directly
 - but after **substantial efforts (i.e., mixing and mastering)** from the music producer.
- Widely-used procedures include:
 - Digital signal processing techniques
 - Parametric vocoders
 - Empirical strategies in audio smoothing, note correction, etc.
 - Voice control related to other sources (mixing)

Q: Can we utilize **this** concept in production for better SVS data generation and preparation?

Key Contributions

- Introduce a unique data curation method for new SVS data
 - that incorporates a singing synthesizer and manual tuning
- Release two large-scale multi-singer SVS corpora:
 - ACE-Opencpop and ACE-KiSing
- Demonstrate three use-cases of the corpora, which shows to improve the performance of SVS modeling.

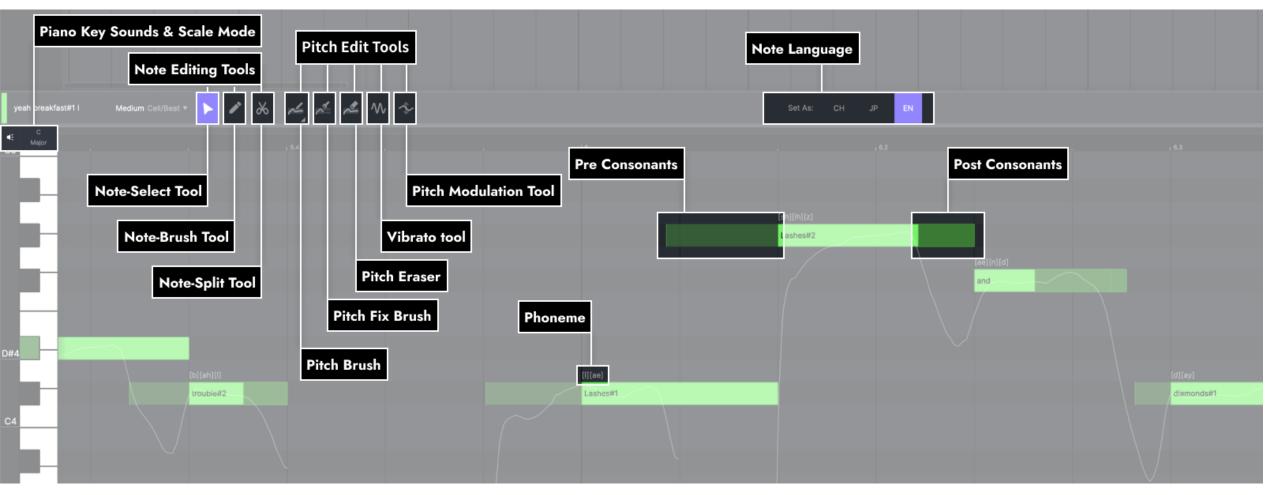
- Data Preparation
- Information Verification and Correction
- Tuning for Voice Match
- Tuning for Singer Adaptation



- Data Preparation
 - Typical singing synthesis data preparation includes:
 - Musical notes, duration, syllable assignment, phone duration within a syllable
- Information Verification and Correction
- Tuning for Voice Match
- Tuning for Singer Adaptation

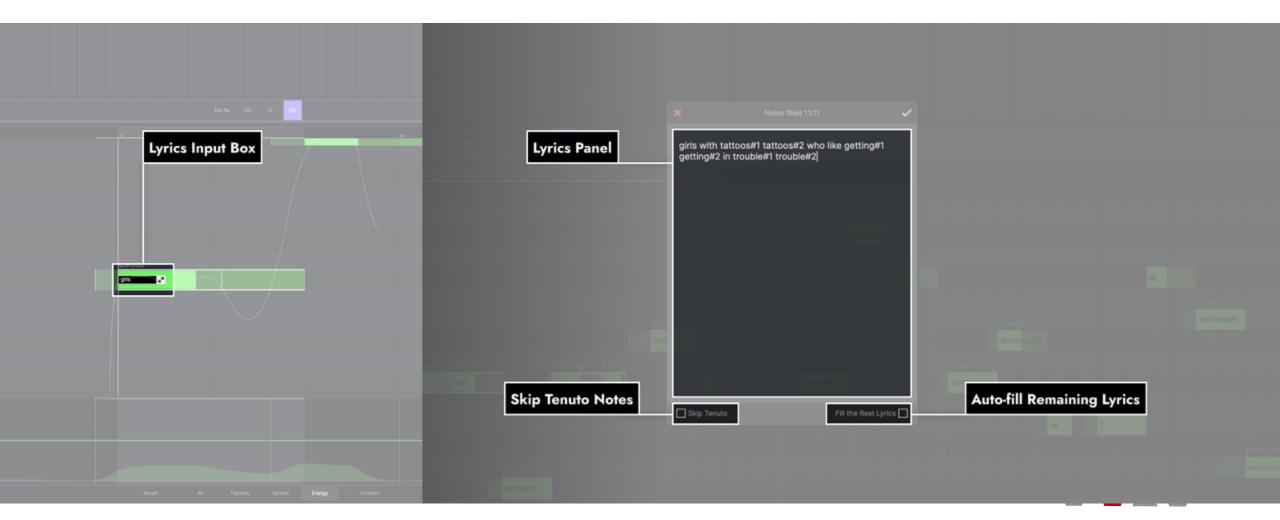
- Data Preparation
- Information Verification and Correction
 - Error correction through ACE-Singer Interface
- Tuning for Voice Match
- Tuning for Singer Adaptation

Corpora Details – Curation Process – Music Note Editing



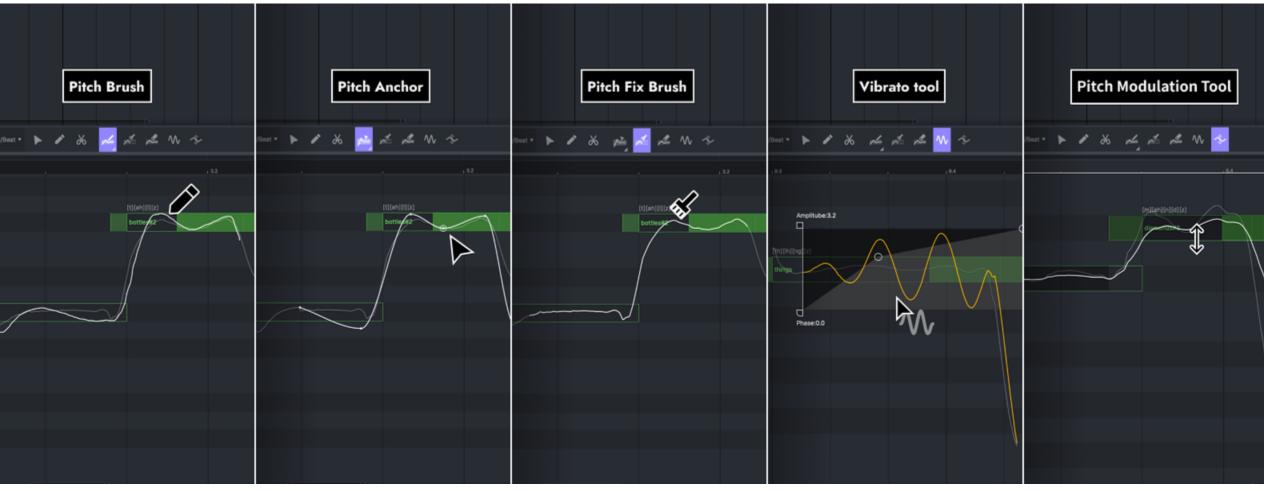
CMU-LTI WAV Lab

Corpora Details – Curation Process – Lyrics Editing



- Data Preparation
- Information Verification and Correction
- Tuning for Voice Match
 - Iterative process to match the synthesized singing to the original singing
 - Key steps include:
 - F0 contour modification
 - Adding breath sounds
 - Adjusting the vibrato
 - Fine-tuning syllable duration
- Tuning for Singer Adaptation

Corpora Details – Curation Process – FO Contour Editing



CMU-LTI WAV Lab

- Data Preparation
- Information Verification and Correction
- Tuning for Voice Match
- Tuning for Singer Adaptation
 - Filtering unnatural singing phrases
 - \rightarrow Not all singers can be proficient in all singing phrases!

Resulting Datasets

ACE-Opencpop

- Sourced from Opencpop*
- Directly uses the provided music score
 - Common Chinese pop-style songs

* Wang, Y., Wang, X., Zhu, P., Wu, J., Li, H., Xue, H., Zhang, Y., Xie, L., Bi, M. (2022) Opencpop: A High-Quality Open Source Chinese Popular Song Corpus for Singing Voice Synthesis. Proc. Interspeech 2022, 4242-4246, doi: 10.21437/Interspeech.2022-48

Resulting Datasets (Cont'd)

ACE-KiSing

- Source from KiSing* but with additional new songs
- Re-transcribed the music scores
- Specialty: multi-genre, high melisma

* http://shijt.site/index.php/2021/05/16/kising-the-first-open-sourcemandarin-singing-voice-synthesis-corpus/

Comparison to other multi-singer corpora

Dataset	Year	Language	Duration	Music Score	SVS	SVC	License
NUS-48E	2013	ENG	1.9	×	×		Research-only
NHSS	2019	ENG	4.8	×	×		Research-only
JVS-MuSiC	2020	JPN	2.3	×	×		CC
OpenSinger	2021	CMN	50.0	×	×		CC-NC
M4Singer	2022	CMN	29.8				CC-NC
SingStyle111	2023	CMN/ENG/ITA	12.8		×		Restricted by request
ACE-Opencpop	2024	CMN	128.9				CC-NC
ACE-KiSing	2024	CMN/ENG	32.5				CC-NC

- Direct SVS
 - Directly training SVS with the corpora
- Transfer learning
 - Using pre-trained SVS model as initialization for other methods
- Joint training
 - Jointly using the data with other corpora to train multi-singer SVS

- Direct SVS
 - ACE-KiSing
 - ACE-Opencpop
- Transfer learning
 - [In-domain transfer] ACE-Opencpop -> Opencpop
 - [Out-of-domain transfer] ACE-Opencpop -> Kiritan
- Joint training
 - ACE-KiSing + KiSing

- Direct SVS
 - ACE-KiSing
 - ACE-Opencpop
- Transfer learning

- SVS Model
- Xiaoice-Sing2 (Wang et al. 2022)
- VISinger2 (Zhang et al. 2023)

Based on the open-source implementation in ESPnet-Muskits (Shi et al. 2022)

- [In-domain transfer] ACE-Opencpop -> Opencpop
- [Out-of-domain transfer] ACE-Opencpop -> Kiritan
- Joint training
 - ACE-KiSing + KiSing

- Direct SVS
 - ACE-KiSing
 - ACE-Opencpop
- Transfer learning

Evaluation Metrics:

- Mel Cepstral Distortion (MCD)
- Semitone Accuracy (S. Acc)
- F0 Root Mean Square Error (F0 RMSE)
- Speaker Similarity (SECS)*
- Mean Opinion Score (MOS) with 95% Confidence Interval.
- [In-domain transfer] ACE-Opencpop -> Opencpop
- [Out-of-domain transfer] ACE-Opencpop -> Kiritan
- Joint training
 - ACE-KiSing + KiSing

*Powered by ESPnet-SPK Rawnet-based speaker embedding.

Direct SVS (ACE-KiSing)

Model	MCD	S. Acc.	F0 RMSE	SECS	MOS
Xiaoice	6.10	62.93	0.199	0.77	3.29 ± 0.06
VISinger2	5.24	64.50	0.185	0.80	3.64 ± 0.06
G.T.	-	-	-	-	4.49 ± 0.05
Source G.T.	-	-	-	-	4.51 ± 0.07

G.T. is the test set prepared in ACE-Opencpop.

Source G.T. is the test set in the original Opencpop dataset.

Direct SVS (ACE-KiSing)

Model	MCD	S. Acc.	F0 RMSE	SECS	MOS
Xiaoice	6.10	62.93	0.199	0.77	3.29 ± 0.06
VISinger2	5.24	64.50	0.185	0.80	3.64 ± 0.06
G.T.	-	-	-	-	4.49 ± 0.05
Source G.T.	-	-	-	-	4.51 ± 0.07

Comparing G.T. and Source G.T., there is still a minor **gap** in MOS quality after the manual tuning.

Direct SVS (ACE-KiSing)

Model	MCD	S. Acc.	F0 RMSE	SECS	MOS
Xiaoice	6.10	62.93	0.199	0.77	3.29 ± 0.06
VISinger2	5.24	64.50	0.185	0.80	3.64 ± 0.06
G.T.	-	-	-	-	4.49 ± 0.05
Source G.T.	-	-	-	-	4.51 ± 0.07

However, we also observe that with recently proposed singing synthesizers, the G.T., though also artificial, shows **a much better MOS score** (indicating better quality).

Direct SVS (ACE-Opencpop)

Model	MCD	S. Acc.	F0 RMSE	SECS	MOS
Xiaoice	5.81	64.33	0.162	0.75	3.53 ± 0.05
VISinger2	5.08	65.19	0.140	0.78	3.81 ± 0.05
G.T.	-	-	-	-	4.35 ± 0.06
Source G.T.	-	-	-	_	4.69 ± 0.06

We can observe similar findings with ACE-Opencpop as with ACE-KiSing.

Transfer Learning (In-domain)

Model	MCD	S. Acc.	F0 RMSE	MOS
Xiaoice	9.26	59.22	0.185	2.78 ± 0.03
Xiaoice*	8.78	60.72	0.182	3.08 ± 0.05
ViSinger2	7.54	64.50	0.172	3.63 ± 0.07
VISinger2*	7.26	65.18	0.162	3.66 ± 0.06
G.T.	-	-	-	4.69 ± 0.06

For in-domain scenarios, pre-training on ACE-Opencpop could **benefit** both Xiaoice and VISinger2 models.

Transfer Learning (Out-of-domain)

Model	MCD	S. Acc.	FO RMSE	MOS
ViSinger2	7.47	49.33	0.123	3.58 ± 0.07
VISinger2*	7.54	50.88	0.122	3.68 ± 0.07
G.T.	-	-	-	4.57 ± 0.07

In out-of-domain scenarios (cross-lingual + cross-singing styles), we also observe subjective improvements.

Joint-training as a multi-singer augmentation (ACE-KiSing + KiSing)

Model	MCD	S. Acc.	F0 RMSE	MOS
ViSinger2	5.55	68.12	0.168	3.58 ± 0.07
VISinger2*	4.99	72.51	0.170	3.68 ± 0.07
G.T.				4.57 ± 0.07

We also observe significant improvements when using the data together with KiSing (a multi-style 1-hour dataset + melisma \rightarrow more challenging).

Take-Home Message

ACE-Opencpop

ACE-KiSing

- We release two large-scale singing synthesis corpora, ACE-Opencpop and ACE-KiSing, with three common use cases:
 - Direct SVS system training
 - Transfer learning
 - Joint-training
- We showcase the use of manual tuning in dataset curation, which could be a feasible way to expand the dataset into multi-singer/multidomain corpora.

Acknowledgement

We would like to specially thank Shengyuan Xu (Timedomain) and Pengcheng Zhu (Netease) for their support in the data license)

The experiments of the work used Bridges2 system at PSC and Delta system at NCSA.

- Part of the images are generated with Dall-E or Ideogram for research and educational presentation purpose only.
- We utilize some ACE-Studio manual images to demonstrate the curation process.

Modeling

A New Trend in Signal Generation

• Going discrete!

• Benefits from discrete representation

• Scaling up (e.g., TTS with VALL-E (Wang et al. 2023))

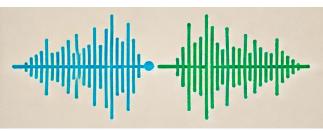
	Conventional TTS Systems	VALL-E
Intermediate Representation	Continuous spectral representation	Audio codec code
Objective Function	Continuous Regression	Language Model
Training Data	< 600 hours	60k hours
In-context Learning	×	

• Benefits from discrete representation

• Improved storage efficiency (e.g., discrete ASR (Chang et al. 2023))

Data Format	Data size (bits)
Raw waveform	16 x 16000 x T
Acoustic Features	32 x D x 100 x T
Self-supervised learning representation	32 x 1024 x 50 x T
Discrete tokens	12 x 50 x T

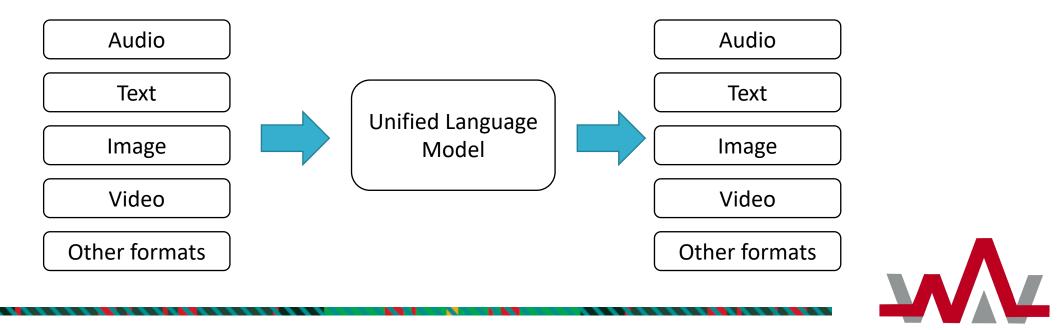
• Benefits from discrete representation



• Enhanced efficiency in computation (e.g., speech enhancement with CodecFormer (Yip et al. 2024))

Model	GMACs	Training Time (h/epoch)
SepFormer	77.3	2.7
CodecFormer	1.5	1.0

- Benefits from discrete representation
- Potential for integration with various modalities (e.g., Multimodal LLM with AnyGPT (Zhang et al. 2024))



TokSing: Singing Voice Synthesis based on Discrete Tokens

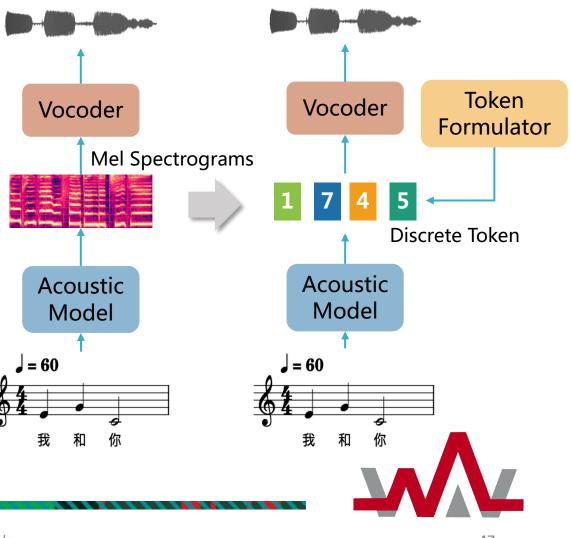
Yuning Wu¹, Chunlei Zhang², Jiatong Shi³, Yuxun Tang¹, Yang Shan², Qin Jin¹

¹ Renmin University of China, ² Tencent, ³ Carnegie Mellon University

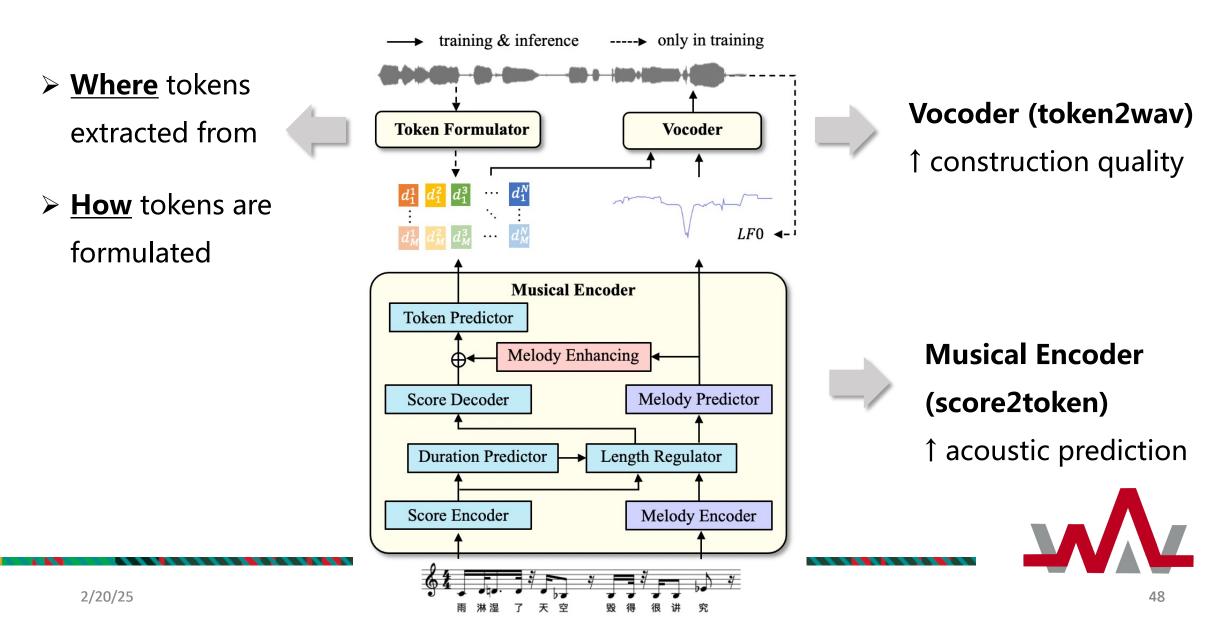
Challenges in Discrete SVS

• Acoustic details' loss during discretization

• High demand in <u>melody</u>



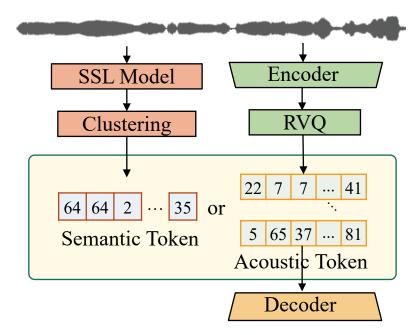
TokSing Framework

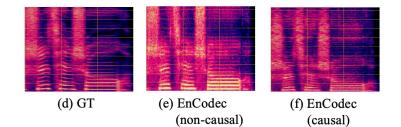


Token Formulation

- Where tokens extracted from
- How tokens are formulated
 - Semantic token
 - Acoustic token
 - For a better construction quality, we choose <u>semantic tokens</u> and train a <u>discrete-</u> based vocoder.

- For more implementation of codec, see our latest work in ESPnet-Codec (Shi et al. 2024)



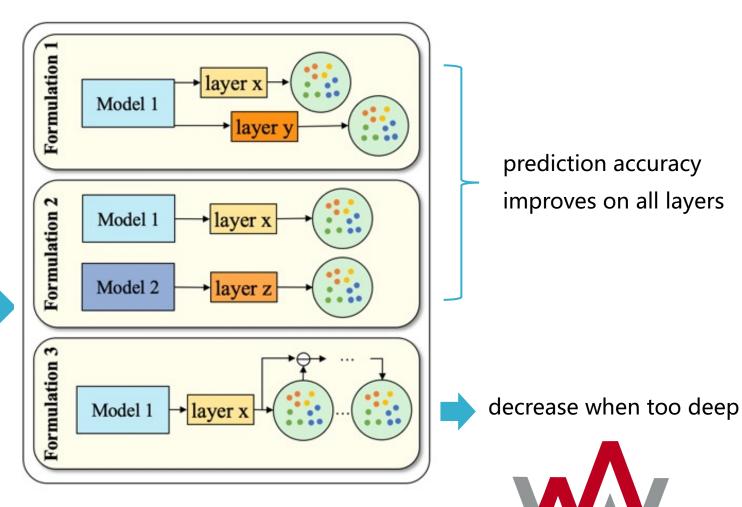


Token Formulation (Cont'd)

- Where tokens extracted from
- How tokens are formulated

- single-layer
- multi-layer (MMM-based framework)

- For more information of the MMM-based framework, see our concurrent work in MMM (Shi et al. 2024)

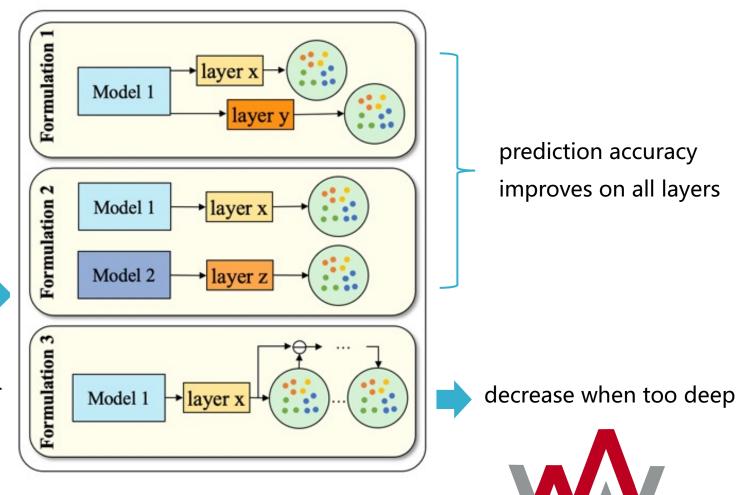


Token Formulation (Cont'd)

- Where tokens extracted from
- How tokens are formulated

- single-layer
- multi-layer (MMM-based framework)
- *Which model and which layer*?

verify through weighted sum on vocoder
 → the 6th and 23rd layers of SSL
 models (HuBERT, WavLM and etc.)



Token Formulation - Abalation

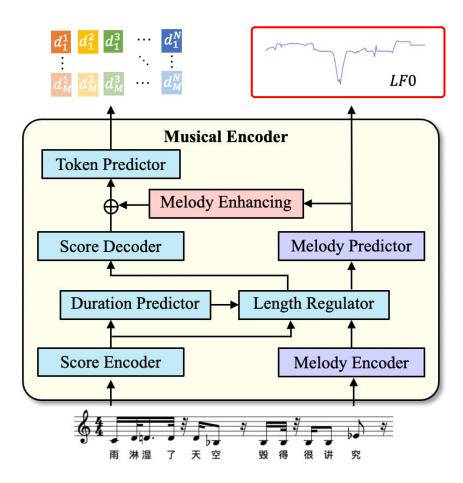
Depresentation	Vocoo	ler	+ Acoustic			
Representaion	MCD↓	$F0\downarrow$	MCD↓	$F0\downarrow$	MOS ↑	
single	6.59	0.17	7.56	0.17	3.70	
Formulation 1	6.51	0.17	7.59	0.18	3.74	
Formulation 2	6.39	0.16	7.50	0.17	3.61	
Formulation 3	5.96	0.15	7.65	0.18	3.40	

Experiments on 5.2hrs single singer: Opencpop (Wang et al. 2022)

- Effective in both acoustic model and vocoder.
- Can be utilized individually or combined strategically.

F0 here refers to F0 root mean square error (supported by ESPnet-TTS)

Musical Encoder – Enhance the Melody

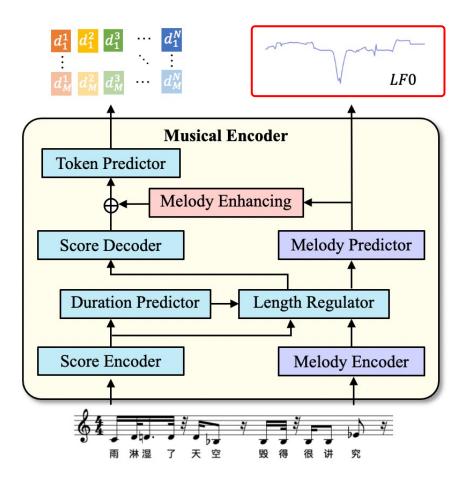


• To alleviate melody degradation during discretization

 \rightarrow include a melody signal (*logF*0)

Dopresentation	Voco	ler	+ Acoustic		
Representation	MCD↓	F0 ↓	MCD↓	F0 ↓	
SSL Feat.	3.18	0.14	-	-	
token only	9.10	0.27	9.60	0.26	
token + LF0	6.59	0.17	7.56	0.17	
Codec token + $LF0$	7.56	0.17	-	-	
Codec decoder	6.35	0.24		-	
Mel spectrogram	3.32	0.15	8.00	0.19	

Musical Encoder – Enhance the Melody



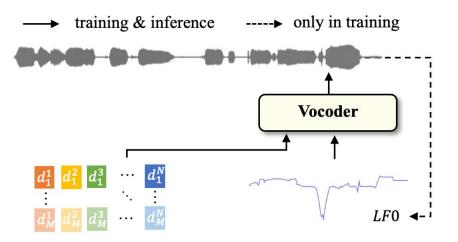
- Tokens encapsulate certain pitch-related details
- \rightarrow integrate predicted melody into token prediction

Melody	Melody	0	bjective		Subjective		
Prediction	Enhanced	MCD ↓	F0 ↓	$\mathbf{SA}\uparrow$	Melody ↑	$\mathbf{MOS} \uparrow$	
×	×	8.07	0.19	44%	2.07	3.18	
×	\checkmark	7.61	0.21	59%	2.32	3.65	
\checkmark	\checkmark	7.56	0.17	61%	2.38	3.70	

SA refers to semitone accuracy.

Vocoder Enhancement

• Vocoder becomes the new bottleneck



Dopresentation	Voco	ler	+ Acoustic		
Representation	MCD↓	F0 ↓	MCD↓	F0 ↓	
SSL Feat.	3.18	0.14	-	-	
token only	9.10	0.27	9.60	0.26	
token + LF0	6.59	0.17	7.56	0.17	
Codec token + $LF0$	7.56	0.17	_	_	
Codec decoder	6.35	0.24	-	-	
Mel spectrogram	3.32	0.15	8.00	0.19	

Transfer learning

vocoder pretrained on 150h multi-speaker dataset

Dennegentetion	Vocod	ler	+ Acou	istic
Representation	MCD↓	F0 ↓	MCD↓	F0 ↓
ACE-Opencpop	5.60	0.14	-	12
Opencpop-origin	6.51	0.16	8.15	0.19
Opencpop-transfer	6.11	0.16	7.43	0.17

Benefits of Going Discrete?

Subjective evaluation from different angles.

Evaluations between SVS systems

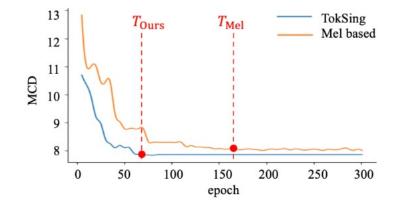
Donnocontation	Objectiv	Objective Evaluations			Subjective Evaluations			
Representation	MCD↓	F0 ↓	$SA\uparrow$	Pron ↑	Melody ↑	Tech ↑	MOS ↑	Bitrate/bps
Mel spectrogram	8.00	0.19	59%	2.59	2.23	2.20	3.42	204800
Latent variance	7.76	0.18	62%	2.74	2.34	2.37	3.68	491520
Discrete token	7.56	0.17	61%	2.73	2.38	2.37	3.70	1950
GT	-		-	2.93	2.83	2.82	4.59	-

 \rightarrow lower bitrate

Better objective and subjective performance with the discrete token!

Benefits of Going Discrete?

Convergence speed



\rightarrow higher convergence speed

Mel cepstral distortion measure in the y-axis

CMU-LTI WAV Lab

Some Examples

baseline GT TokSing Lyric **(**) "能不能给我一首歌的时间" Could you give me the time of one song? **(**) "静静地把那拥抱变成永远" Turn the embrace into forever ())**(**) "小酒窝长睫毛" Little dimples and long eyelashes

Baseline here is the model that directly use the discrete units from speech pre-trained models

CMU-LTI WAV Lab

Take Home Messages

✓ Propose a discrete based SVS framework, TokSing, with <u>melody enhancement</u> by integrating melody control signals and improving acoustic prediction.

 ✓ Introduce a token formulator and provide <u>multiple token formulations</u>, offering flexibility in token sourcing and blending.

 ✓ Achieves better performance with <u>lower storage cost</u> and <u>higher convergence speed</u> than Mel systems.

Training code and pre-trained models are currently in ESPnet Pull Request!

SingOMD: Singing Oriented Multi-resolution Discrete Representation Construction from Speech Models

Yuxun Tang¹, Yuning Wu¹, Jiatong Shi², Qin Jin¹

¹ Renmin University of China, ² Carnegie Mellon University

Improve Discrete Units for Singing?

- TokSing presents a practical solution to use existing speech models
 - Discrete units are extracted from pre-trained self-supervised speech models
- Can we acquire discrete representations for singing?

Potential Issues in Discrete SVS

- No existing self-supervised learning (SSL) representations for singing
 - Various reasons, but mostly with data (mentioned earlier):
 - Strict copyright issue of singing data
 - Constraints in scaling of singing data

CMU-LTI WAV Lab

Potential Issues in Discrete SVS

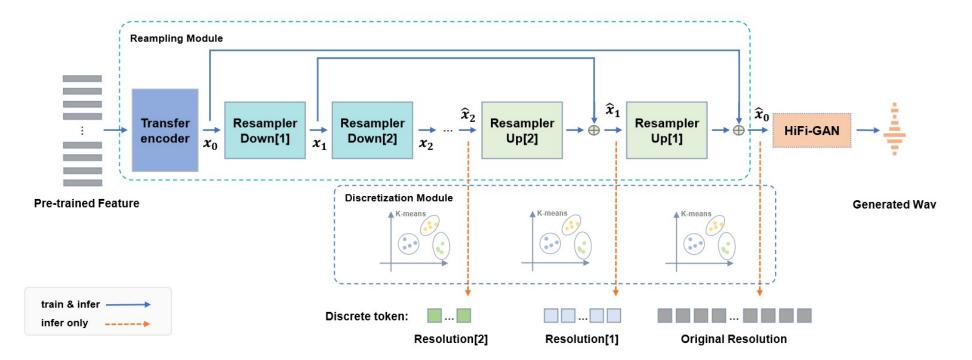
- Domain mismatch (singing vs. speech)
 - Nuanced pitch variations
 - Broader spectrum of vocal ranges
 - Flexible duration
- Fixed resolution (i.e., 20ms)
 - Suboptimal?
 - Insights from (Multiresolution HuBERT, Shi et al. 2024)

Potential Issues in Discrete SVS

- No existing SSL for singing
- Domain mismatch (singing vs. speech)
- Fixed resolution (i.e., 20ms)

A new framework, namely **SingOMD** to create new discrete tokens for singing

Overview: $\boldsymbol{s} = \mathrm{SSL}\left(\boldsymbol{y}\right)$ $\boldsymbol{\hat{x}} = \mathrm{Resampling}\left(\boldsymbol{s}\right)$ $\boldsymbol{\hat{y}} = \mathrm{Vocoder}\left(\boldsymbol{\hat{x}}\right)$



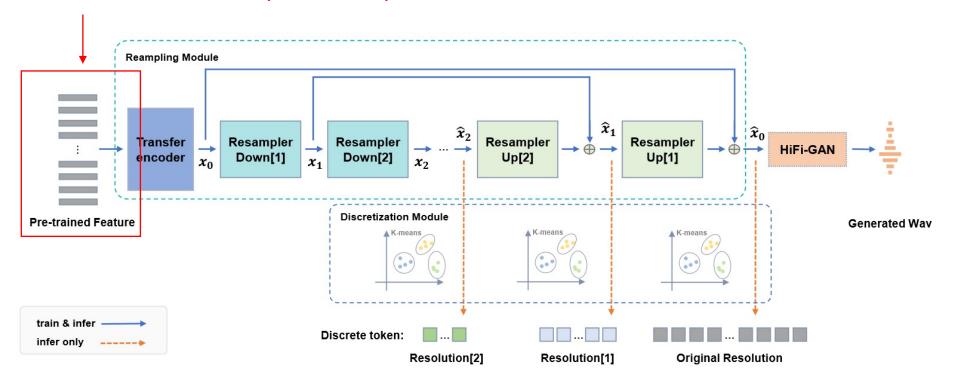
CMU-LTI WAV Lab

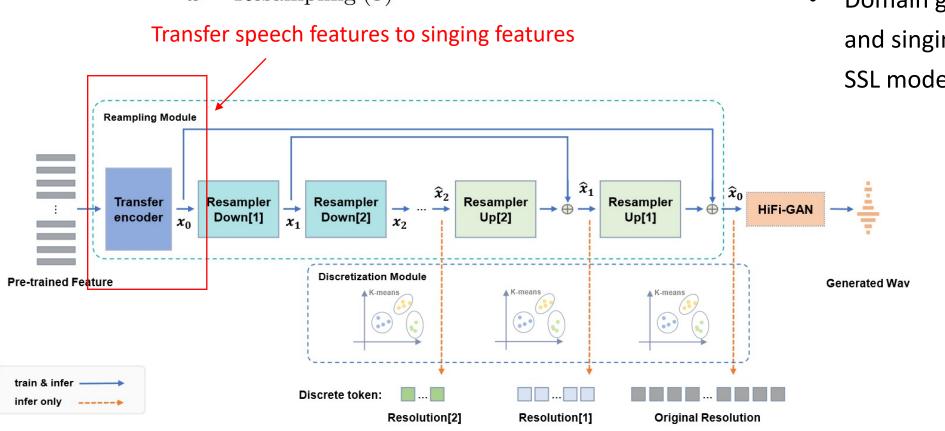
Step 1: extract features from SSL models

 $\boldsymbol{s} = \mathrm{SSL}\left(\boldsymbol{y}\right)$

Deal with the problem:

• No SSL models for singing





Step 2: transfer and resample features

 $\hat{\boldsymbol{x}} = \text{Resampling}(\boldsymbol{s})$

Deal with the problem:

 Domain gap between speech and singing when using speech SSL models directly

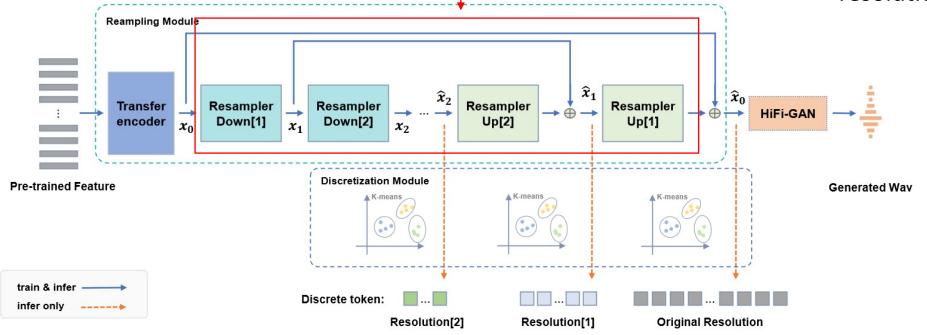
Step 2: transfer and resample features

 $\hat{\boldsymbol{x}} = \text{Resampling}\left(\boldsymbol{s}\right)$

Incorporate multi resolution features in a Unet-based resampling module

Deal with the problem:

 Suboptimal performance for representations in a fixed resolution



Step 3: resynthesize waveform

Resynthesize waveform

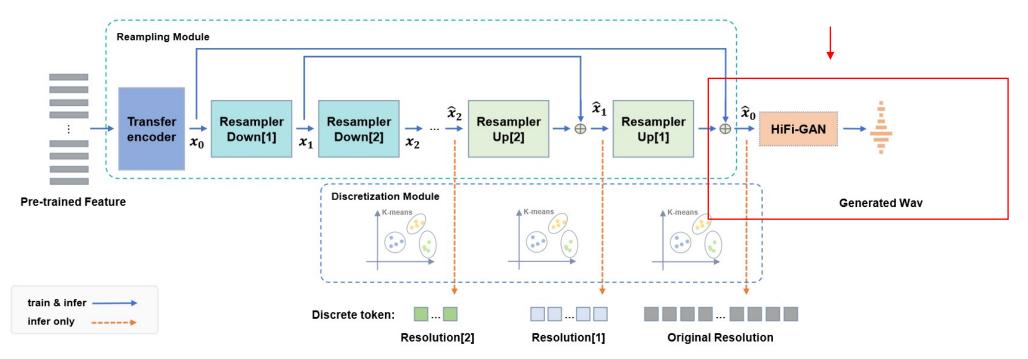
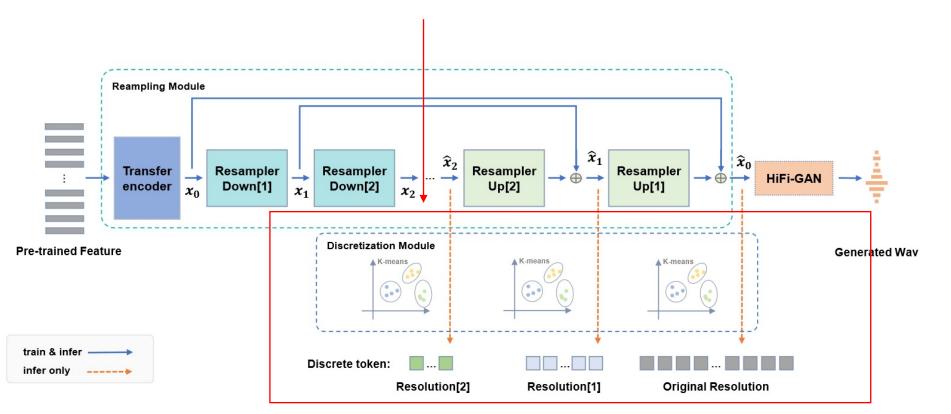


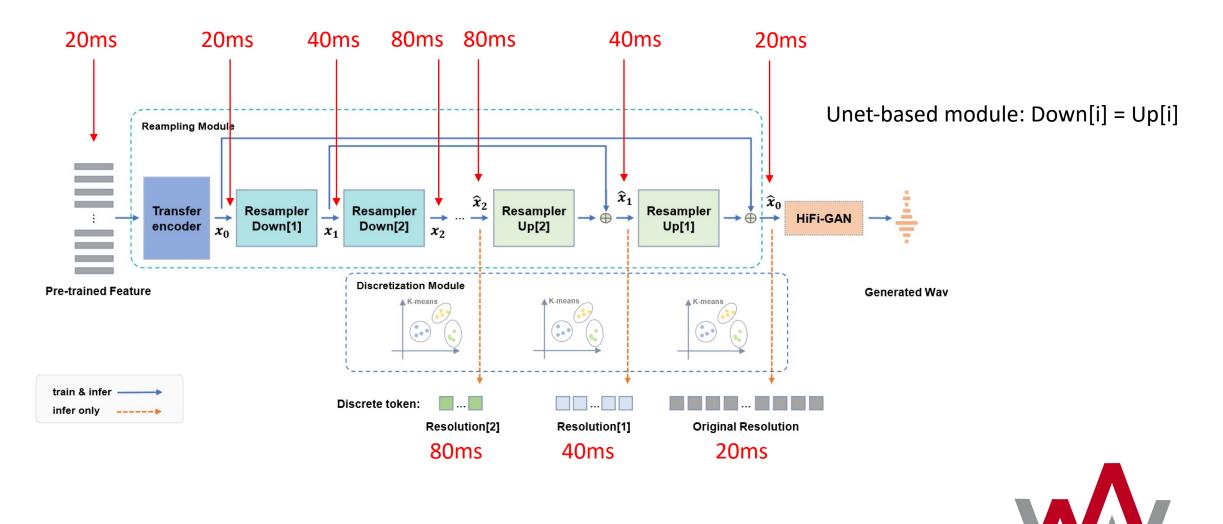
Figure 1: Illustration of the overall workflow of our proposed SingOMD.

CMU-LTI WAV Lab

Step 4: obtain multi resolution discrete tokens



An example: Down[1] = Down[2] = 2, SSL output features in 20ms



2/20/25

CMU-LTI WAV Lab

Training Details

- SingOMD Pre-training Datasets (210h):
 - ACE-Opencpop
 - M4Singer
 - Opencpop
 - OpenSinger
- Speech SSL base
 - HuBERT-base on Librispeech
- Downstream tasks (with Opencpop):
 - Singing resynthesis (i.e., vocoder)
 - SVS

Task 1: Singing Resynthesis

Note: to fully investigate the performance of discrete tokens, we **do not include F0** as input (which is different from TokSing)

- Task: resynthesize waveform from input discrete token
- Model: Discrete HiFiGAN

	Method	SSL	Resolution	MCD↓	F0 RMSE \downarrow	S. ACC.↑	VUV Error \downarrow	$\mathbf{MOS}\uparrow$
1	Baseline	HuBERT-base/3	(20)	8.7103	0.2192	25.40%	9.93%	$2.46 (\pm 0.06)$
2	Baseline	HuBERT-base/3+10+11	(20)	8.8802	0.2922	27.42%	8.74%	$2.34 (\pm 0.05)$
3	Baseline	HuBERT-base/sum	(20)	7.6427	0.1847	38.90%	7.66%	$2.78~(\pm 0.06)$
4	SingOMD (ours)	HuBERT-base/sum	(20,)	6.9693	0.2167	60.32%	8.24%	3.39 (± 0.06)
5	SingOMD (ours)	HuBERT-base/sum	(20, 40)	6.6414	0.1806	64.02%	8.41%	$3.48 (\pm 0.06)$
6	SingOMD (ours)	HuBERT-base/sum	(20, 40, 80)	6.5766	0.1828	64.83%	8.16%	$3.55~(\pm 0.07)$
7	Ground Truth	-	-	-	-	-	-	4.66 ± 0.06

Task 1: Singing Resynthesis

- Task: resynthesize waveform from input discrete token
- Model: Discrete HiFiGAN

	Method SSL		Resolution	$ $ MCD \downarrow	F0 RMSE \downarrow	S. ACC.↑	VUV Error \downarrow	$\mathbf{MOS}\uparrow$
1	Baseline	HuBERT-base/3	(20)	8.7103	0.2192	25.40%	9.93%	$2.46 (\pm 0.06)$
2	Baseline	HuBERT-base/3+10+11	(20)	8.8802	0.2922	27.42%	8.74%	$2.34 (\pm 0.05)$
3	Baseline	HuBERT-base/sum	(20)	7.6427	0.1847	38.90%	7.66%	$2.78~(\pm 0.06)$
4	SingOMD (ours)	HuBERT-base/sum	(20,)	6.9693	0.2167	60.32%	8.24%	3.39 (± 0.06)
5	SingOMD (ours)	HuBERT-base/sum	(20, 40)	6.6414	0.1806	64.02%	8.41%	$3.48 (\pm 0.06)$
6	SingOMD (ours)	HuBERT-base/sum	(20, 40, 80)	6.5766	0.1828	64.83%	8.16%	$3.55 (\pm 0.07)$
7	Ground Truth	-	_		-	-	-1	4.66 ± 0.06

the effectiveness of transferring encoder in single resolution

Task 2: SVS

- Model:
- Discrete cascaded SVS system
- Mel-spectrograms cascaded SVS system (XiaoiceSing as acoustic model)

Model	MCD↓	F0 RMSE \downarrow	MOS ↑
Mel spectrogram	6.9283	0.2610	3.04 ± 0.06
HuBERT-base/3 HuBERT-base/3+10+11	9.5528 9.7585	0.2321 0.3200	$\begin{array}{c} 2.34 \pm 0.06 \\ 2.34 \pm 0.05 \end{array}$
DiscreteSVS+SingOMD	7.7234	0.1941	$\textbf{3.10} \pm \textbf{0.06}$
Ground Truth	-	-	4.66 ± 0.06

Mel spectrogram:

Discrete SingOMD:

More Demo at: https://interspeech2024singomd.github.io/

Take Home Messages

 Propose SingOMD, a novel method to construct singing-oriented discrete representations for singing generation by leveraging speech SSL models

 Experiments demonstrate the robustness, efficiency, and effectiveness of SingOMD tokens

Training code and pre-trained models are currently in ParallelWaveGAN Pull Request!

Evaluation

SingMOS: An Extensive Open-Source Singing Voice Dataset for MOS Prediction & An Exploration on Singing MOS Prediction

Yuxun Tang¹, Jiatong Shi², Yuning Wu¹, Qin Jin¹

¹ Renmin University of China, ² Carnegie Mellon University

Evaluation is Hard

- How to evaluate a singing clip?
- **Objective Metrics**:
 - Mel cepstral distortion (MCD)
 - Logarithmic F0 root mean square error (F0 RMSE)
 - Semitone accuracy (S. Acc.)
 - Voice/Unvoice Error (V/UV E.)
- Subjective Metrics:
 - Mean Opinion Score (MOS)

Show less correlation with audio quality

MOS Predictor (in speech)

- Several works in speech focusing on MOS prediction
 - Direct neural networks:
 - MOSNet (Lo. et al. 2019)
 - MBNet (Leng et al. 2021)
 - LDNet (Huang et al. 2021)
 - ...
 - SSL-based
 - SSL-MOS (Huang et al. 2022)
 - UTMOS (Saeki et al. 2022)
 - DDOS (Tseng et al. 2022)
 - LE-SSL-MOS (Qi. et al. 2023)
 - ...

Trained with data from :

...

- Speech Voice Conversion
 Challenges
- Speech Challenges for TTS

MOS Predictor (in speech)

- Several works in speech focusing on MOS prediction
 - Direct neural networks:
 - MOSNet (Lo. et al. 2019)
 - MBNet (Leng et al. 2021)
 - LDNet (Huang et al. 2021)
 - ...
 - SSL-based

• ...

- SSL-MOS (Huang et al. 2022)
- UTMOS (Saeki et al. 2022)
- DDOS (Tseng et al. 2022)
- LE-SSL-MOS (Qi. et al. 2023)

				 Sneech Vnice Conversion 					
	Sim-O↑	Sim-R↑	WER↓	$WER^{\star}\downarrow$	UTMOS \uparrow	CMOS↑	SMOS ↑		
Ground Truth	0.68	-	1.94	0.68	4.14	+0.08	3.85		
VALL-E 🕈	-	0.58	5.90	-	-	-	-		
VALL-E [◆]	0.47	0.51	6.11	4.87	3.68	-0.60	3.46		
NaturalSpeech 2	0.55	0.62	1.94	1.24	3.88	-0.18	3.65		
Voicebox [♠]	0.64	0.67	2.03	1.81	3.82	-0.23	3.69		
Voicebox [◆]	0.48	0.50	2.14	1.24	3.73	-0.32	3.52		
Mega-TTS 2 [♠]	0.53	-	2.32	2.17	4.02	-0.20	3.63		
UniAudio	0.57	0.68	2.49	1.81	3.79	-0.25	3.71		
StyleTTS 2 [♣]	0.38	-	2.49	1.58	3.94	-0.21	3.07		
HierSpeech++*	0.51	-	6.33	4.97	3.80	-0.41	3.50		
NaturalSpeech 3	0.67	0.76	1.81	1.13	4.30	0.00	4.01		

Trained with data from :

Speech MOS predictor starts to be utilized to evaluate samples.

(Naturalspeech 3, Ju et al. 2024)

What About Singing Voices?

- Challenges of Singing MOS Predictor
 - Data! Data! Data!
- Why not start collecting the data?

Data Construction

Data collection and selection

Dataset (12):

- zh-datasets (5): Opencpop, M4Singer, ACE-Opencpop, Kising, SingGen
- jp-datasets (7): JVSMusic, Kiritan, Ofuton, Amaboshi, Natsume, Oniku, Namine

Model (33+1):

- Singing Voice Synthesis (12)
- Singing Voice Conversion (7)
- Vocoder (9)
- Codec (5)
- Ground-Truth

Setting (6):

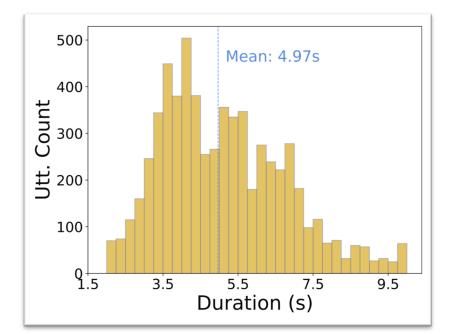
- Sample rating (3): 44kHz, 24kHz, **16kHz**
- Codebook number in codec (6): 4, 8, **32**

Data Construction (Cont'd)

• Data collection and selection

Statistic:

- 105 Systems (Dataset-Model-Setting)
- 6583 singing samples: 6175 synthetic samples, 408 GT samples
 - 2236 samples in 27 SVS systems
 - 1263 samples in 17 SVC systems
 - 1406 samples in 28 vocoder systems
 - 1270 samples in 27 codec systems
 - 408 samples in 6 GT systems



Data Construction (Con'td)

- Data Annotation
 VoiceMOS Challenge 2024
 - V1: 31 systems, 90-100 samples / system, 5 annotators
 - Used in VoiceMOS Challenge 2024 (Track 2, the official set)
 - V2: 75 systems, 50 samples / system, 25 annotators

Dataset Construction

- Data Split
 - Main subset (3793): split 70% , 10%, 20% into train / dev / eval set
 - Unseen set (2763): eval set
 - unseen model (4): zh (2), jp (3), including a generated dataset
 - unseen dataset: 14 models cover SVS, SVC, vocoder, codec

Dataset Analyses

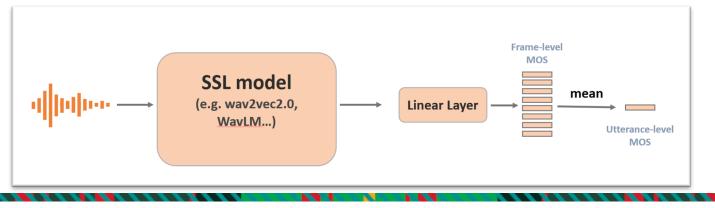
- Ovearll performance:
- GT > vocoder > SVC > SVS > Codec

- Top performing systems:
 - **Vocoder**: Diffwave, HiFiGAN
 - **SVC**: sovits_contentvec, sovits_contentvec_nsf-hifigan_enhance
 - **SVS**: nnsvs_unk, acesinger, visinger
 - Codec: amuse_dac

Baseline on SingMOS

• Experimental Settings:

- baseline model: SSL-MOS with loss margin
- finetune up to 50 epochs
- three random seeds to calculate the average



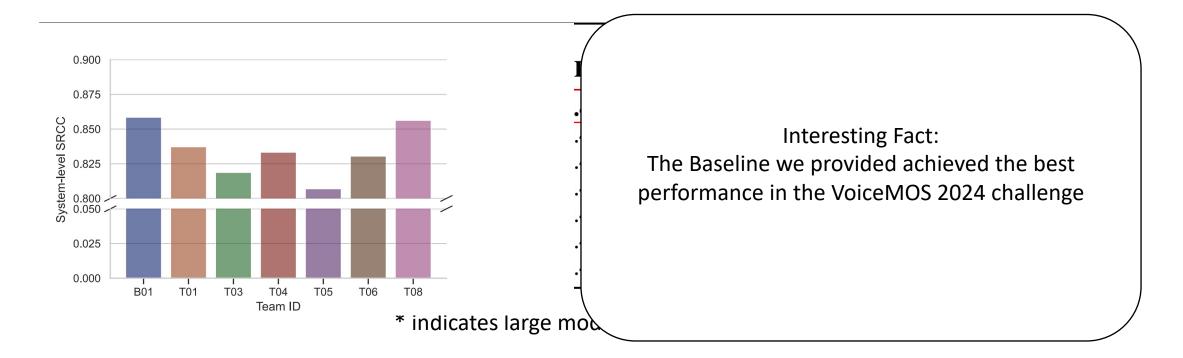
Baseline Experiments (Seen Dataset)

CCI Madal		Utter	ance		System				
SSL Model	Test Error↓	LCC↑	SRCC ↑	KTRCC ↑	Test Error↓	LCC↑	SRCC ↑	KTRCC ↑	
wav2vec2.0	0.389	0.659	0.644	0.478	0.029	0.943	0.905	0.751	
wav2vec2.0*	0.482	0.554	0.574	0.419	0.065	0.873	0.815	0.633	
XLS-R*	0.385	0.603	0.595	0.434	0.034	0.915	0.834	0.653	
HuBERT	0413	0.582	0.557	0.408	0.070	0.839	0.820	0.647	
HuBERT*	0.422	0.559	0.556	0.405	0.062	0.848	0.845	0.653	
WavLM	0.442	0.561	0.566	0.407	0.042	0.882	0.828	0.657	
WavLM*	0.393	0.591	0.590	0.430	0.046	0.892	0.852	0.663	

* indicates large models (300M version)

Larger is not better? Multilingual is not better?

Baseline Experiments (Seen Dataset)



Larger is not better? Multilingual is not better?

Baseline Experiments (Unseen Dataset)

SSL Model		Utter	ance		System				
SSL Model	Test Error↓	LCC ↑	SRCC ↑	KTRCC ↑	Test Error↓	LCC ↑	SRCC ↑	KTRCC ↑	
HuBERT	0.574	0.675	0.527	0.386	0.221	0.866	0.611	0.455	
HuBERT*	0.503	0.704	0.568	0.417	0.206	0.894	0.657	0.487	
wav2vec2.0	0.658	0.685	0.525	0.383	0.298	0.881	0.635	0.485	
wav2vec2.0*	0.709	0.682	0.502	0.363	0.305	0.894	0.585	0.430	
WavLM	0.594	0.657	0.565	0.415	0.218	0.882	0.759	0.604	
WavLM*	1.180	0.132	0.069	0.047	0.755	0.483	0.438	0.331	
XLS-R*	0.540	0.688	0.581	0.427	0.247	0.888	0.753	0.615	

* indicates large models (300M version)

The order has totally changed and results are mixed!

Take Home Messages

• We released the first MOS prediction dataset for singing voice.

- The data is open-sourced at huggingface:
 - <u>https://huggingface.co/datasets/TangRain/SingMOS</u>
- The pre-trained predictor is open-sourced at Github
 - <u>https://github.com/South-Twilight/SingMOS/tree/main</u>

Evaluation Beyond Singing Voice

VERSA: A Versatile Evaluation Toolkit for Speech, Audio, and Music

Jiatong Shi¹, Hyejin Shim¹, Jinchuan Tian¹, Siddhant Arora¹, Haibin Wu², Darius Petermann³, Jia Qi Yip⁴, You Zhang⁵, Yuxun Tang⁶, Wangyou Zhang⁷, Dareen Alharthi¹, Yichen Huang¹, Koichi Saito⁸, Jionghao Han¹, Yiwen Zhao¹, Chris Donahue¹, Shinji Watanabe¹,

¹Carnegie Mellon University, ²Microsoft, ³Indiana University, ⁴Nanyang Technological University, ⁵University of Rochester, ⁶Renmin University of China, ⁷Shanghai Jiaotong University, ⁸Sony AI

Up to 64 metrics in speech and audio evaluation supported currently

More Funs in Singing Voice?

- Singing voice conversion
 - We hosted the first Singing Voice Conversion Challenge (SVCC) in ASRU2023
 - collaboration with Nagoya University and Tencent
- Singing voice deepfake detection
 - We hosted the Singing Voice Deepfake Detection (SVDD) Challenge in SLT2024 and MIREX

More Funs in Singing Voice?

- Singing voice conversion
 - We hosted the first Singing Voice Conversion Challenge (SVCC) in ASRU2023
 - collaboration with Nagoya University and Tencent
 - Tomoki Toda & Wen-Chin Huang & Lester Violeta (Nagoya University)
 - Songxiang Liu (Tencent AI Lab)
 - Jiatong Shi (Carnegie Mellon University)

More Funs in Singing Voice?

Singing voice deepfake detection

Singing Voice Deepfake Detection (SVDD)

The SVDD task aims to detect AI-generated singing voices, which is an emerging issue within the music industry that requires specialized solutions.

- We hosted the singing voice deepfake detection at SLT2024 and MIREX
 - collaboration with University of Rochester and Nagoya University

Thanks for Listening!