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Speech Processing in the LLM Era

t% Large Language Models (LLMs) have transformed NLP and are now
aD reshaping speech processing.

LLMs enable unified models for various speech capabilities such as
speech recognition, synthesis, translation, and dialogue etc.

w Integration of speech and text modalities leads to more natural
multimodal systems optimized in an end-to-end fashion.



SLM vs. MLLM

Spoken language model (SLM)

e speech-centric
e backbone is an LM, no need to be an LLM

s Multimodal LLM (MLLM)

e at least two modalities
e backbone is an LLM




Lots of SLM/MLLM
Surveys in Recent
Two Years

In this talk, we mainly share the journey
of developing SLM/MLLM models at
Microsoft.

On The Landscape of Spoken Language Models:
A Comprehensive Survey

Siddhant Arora'* Kai-Wei Chang®* Chung-Ming Chien®* Yifan Peng'* Haibin Wu?*#
Yossi Adi** Emmanuel Dupoux®* Hung-Yi Lee?** Karen Livescu®* Shinji Watanahe!+

Recent Advances in Speech Language Models: A
Survey

Wengian Cui, Dianzhi Yu, Xiaoqi Jiao, Zigiao Meng, Guangyan Zhang, Qichao Wang, Yiwen Guo,
and Irwin King, Fellow, IEEE

Audio-Language Models for Audio-Centric Tasks:
A survey

Yi Su, Jisheng Bai, Qisheng Xu, Kele Xu, Yong Dou

A SURVEY ON SPEECH LARGE LANGUAGE MODELS

Jing Peng'”, Yucheng Wang®", Yu Xi', Xu Li*, Xizhuo Zhang', Kai Yu'’



We Predicted SLM as the Future

...... used LM in model names since 2021

Chen et. al., WavLM: Large-Scale Self-Supervised Pre-

Zhu et. al., VATLM: Visual-Audio-Text Pre-Training with
Training for Full Stack Speech Processing

Unified Masked Prediction for Speech Representation

Learning
n n
m

Zhang et. al., SpeechLM: Enhanced Speech Pre-
Training with Unpaired Textual Data
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Foundation Models
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Figure from: Lewis et al., BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. 2020
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Model Comparison

Feature Decoder-Only  Encoder-Decoder Encoder-Only
Generative Power | High L High X Limited
Parameter Efficiency Vv X Vv

Training Simplicity V| ) ¢ V|

In-Context Learning v X X

Multimodal Extension | Emerging X Limited

10



Spoken LM (SLM)




Extend text-LM to SLM

* Discrete representations of Speech

e Transformer LM

12



AudioLM

* Multistep token generation

e semantic tokens -> coarse acoustic tokens->
fine acoustic tokens

 Audio continuation task

* Google work

Past semantic tokens

Generated semantic tokens

A
~ hl

.......0.0[> (coarse acoustic @.OU-D.C-.OUD

%/—/

Past coarse acoustic tokens

Generated coarse acoustic tokens
A

3
® @0 0 0 0

AudioLM
(semantic
modeling)

AudiolLM

modeling)

AudiolLM
(fine acoustic
modeling)

Future semantic tokens

Future coarse acoustic tokens
A

-

Generated fine acoustic tokens

A

~\

-
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Personalized
Speech

t
VA LL- E Audio Codec Decoder

A
[ |

+ 4+ 4+ 4+ + 4+ 4 4 4
Neural Codec Language Modeling

£oA 4 R S
N S F 4 4
Phoneme Conversion Audio Codec Encoder
Text Eﬂ Acoustic

Condition Prompt prompt | Tet |

Text for synthesis 3-second enrolled recording

N | like hamburger but | love noodles S
much more

4\ LN

14
Wang et al., Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers. 2023



VALL-E

AR: ¢; only attends to left

x C Co €1
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Allow attend Disallow attend

NAR: attend to all tokens
x c v{)_l Cil_l

AR: ¢; only attends to left

AR Transforrﬁaer D"',ecod"er
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NAR Transformer Decoder

x 1 ¢ 1 I

G2P EnCodec Co1j-1 Cr1j-1 -
t t

TeXt IIIIIIIIIIIII

<EOS>

crj

Crij-1

-————r

NAR ID j

AR Model for Coarse Generation
Causal mask is used for model training
Only the left context is considered to
generate the current output

Generate the codec tokens in the first
layer one by one

NAR Model for Fine Generation
Use the previous layer codec codes to
predict the codes in the current layer
No mask for the input during model
training

All the codec codes can be predicted
simultaneously

Wang et al., Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers. 2023



Personalized
Target Speech A

VALL' E X Audio Codec Decoder

(Cross-Lingual VALL-E) | | \

t ¢t ¢+ + ¢+ 1
Cross-Lingual Neural Codec Language Modeling

t i1t N .
I R tt ¢
Multilingual G2P Multilingual G2P Audio Codec Encoder Language ID
E Prompt | Text | Output |
¥ There COl.,I|d be little art in t.his last and
Source Text Target Text Source Speech o finalround of fencing.

It was youth and poverty and proximity
and everything was young and kindly.

16
Zhang et al., Speak Foreign Languages with Your Own Voice: Cross-Lingual Neural Codec Language Modeling. 2023
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Chen et al., VALL-E 2: Neural Codec Language Models are Human Parity Zero-Shot Text to Speech Synthesizers. 2024
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Streaming TTS

Offline TTS + Chunking . ReIY on c.omplex. rgle-lpased segmentation and
e engineering optimization

* Inconsistencies in speech across chunks

Interleave text and _
e Rely on forced alignment

e High computational overhead / hard for scalability

corresponding speech
tokens

Interleave text and e LMs generate text at a constant rate

Jollo g Rilo) CIIIEIRERIVELR N o Can speech be synthesized in parallel with LM-generated
ratio text at a fixed ratio?

19



Interleaved Speech-Text Language Model

Personalized Speech

T
IST—LM Flow Matching
( ‘“ )
t t t t t t t t t

Decoder-only Transformer

t t t t t t t t t t t

t t t t 1 t

Text Tokenizer Speech Tokenizer

T T

u Text Prompt + Text Stream \!,: Acoustic Prompt

A decoder-only LM modeling
interleaved sequence of speech and
text tokens with a fixed ratio (1:2 for
illustration)

Yang, et al., Interleaved Speech-Text Language Models are Simple Streaming Text to Speech Synthesizers. 2024.



PAR: A Novel Language
Modeling Approach that
Unifies AR and NAR

* AR: temporal modeling, but
slow generation

* NAR: parallel generation, but
lack temporal modeling

* PAR: combining explicit
temporal modeling from AR with
parallel generation from NAR --
predicts all masked positions in
parallel but commits only the
leftmost span at each step

Autoregressive

Q00O
Q00O
Q00O
Q00O
Q00O

®

Non-Autoregressive

Q00O
Q00O
Q00O
Q00O
Q00O

Retained Speech Token

& [MASK] Token

VOO

Pseudo-Autoregressive

Q0O VOO
Q0O
Q0O )
Q0O
Q0O

Predicted Speech Token () Text Token

® [EOS] Token

Yang, et al., Pseudo-Autoregressive Neural Codec Language Models for Efficient Zero-Shot Text-to-Speech Synthesis. 2025.



SpeechX — A versatile speech generation model

Versatility: able to handle a wide range of tasks from audio and text inputs.
Robustness: applicable in various acoustic distortions, especially in real-world scenarios where background sounds are prevalent.

Extensibility: flexible architectures, allowing for seamless extensions of task support.

Generated audio =1 | LK

Task Input text Input audio Output audio

Audio Codec Decoder

SpeechX

Noise Transcription  Noisy speech Clean speech
O suppression (optional)
Speech Transcription  Noisy speech Noise
removal (optional)
Neural Codec La nguage Model Target speaker  Transcription  Speech mixture, Clean speech of
extraction (optional) Enrollment speech target speaker
T A Zero-short TTS  Text for Enrollment speech Synthesized speech
? ? T T T T T ? ? ? T T synthesis mimicking target
speaker
Phoneme Conversion Task-based Prompting Clean speech  Edited Clean speech Edited speech
editing transcription
: Noisy speech Edited Noisy speech Edited speech with
noise
Input text Input audio
"t |. ’ "I.I.I oo More demo samples: SpeechX - Microsoft Research

Wang et al., Speechx: Neural codec language model as a versatile speech transformer, 2023.


https://www.microsoft.com/en-us/research/project/speechx/
https://www.microsoft.com/en-us/research/project/speechx/
https://www.microsoft.com/en-us/research/project/speechx/
https://www.microsoft.com/en-us/research/project/speechx/

LLM Gains for SLM?

No clear gain by applying LLM to VALL-E
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Hao et al., Boosting large language model for speech synthesis: An empirical study, 2024.
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Multimodal LLM (MLLM)

25



Why MLLM?

Zero-shot or few-shot generalization from LLM

Flexibility of task prompting from LLM

Strong text capabilities from LLM

Community support of LLM inference




Build MLLM with Speech Capabilities

LLM can have a mouth: speech generation tasks.

LLM can have ears: speech understanding tasks

LLM is the brain - Keep LLM text capabilities

27



Speech Representation to LLM

Discrete

More alighed with LLM which was trained with
discrete text tokens.

Continuous

Represent speech better to avoid information loss
due to quantization.



SLM — Discrete Input

e Discrete tokens for both speech
and text, better modeling with
LLM

* Information loss due to
guantization

R et
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SLM — Continuous Input

 Easily align speech modality with

text 0000
* More efforts for speech output t
LLM

I 1
/ ndapter \ 0000000

f !
Speech
Encoder

!

s s e L




Multi-modal Model with Discrete Audio Inputs

Target Speech

VIioLA

(Source semantic tokens)

S S ST S S S W S
TR (So:rce accxjstlc to+kens) ASR MT
ID Task ID Task ID

Audio Codec Encoder

t

Source Speech E%

Speech Text ASR, ST
Text Text MT, LM
Text Speech multilingual TTS

1

Audio Codec Decoder

(Target semantic tokens) { A
RIS ST SR SR STR S

Multi-Task Codec Language Modeling S
L RE I Y Y

E Ry -, - ~ E
TS ST S S

4 4

TTS
Task ID

(Target acoustic tokens)

Fbank 9.61
Codec 12.83

Big performance gap between Fbank and Codec input
for speech understanding tasks

Wang, et al., ViolLA: Unified codec language models for speech recognition, synthesis, and translation, 2023.
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Speech-LLaMA

Predicted Tokens

A 4
* CTC Compressor LLM
» Reduce the acoustic feature length N Ao g
> Pretrained on 14 language ASR/AST task oG Audio Encoder
» Remove blank frames or average frames 0 F
within same unit Text Prompt CTC Compressor
* Audio Encoder 1

Acoustic Feat
> Few transformer layers to further coustic Features

process the CTC compressor output

» Learn the shared representations within
the space of the LLaMA embeddings

Wu, et al., On decoder-only architecture for speech-to-text and large language model integration, 2023.



Multi-modal Model with Continuous Audio Inputs: WavLLM

-Q /FI -
-
| : | .
1
! Adaptive
Large Language Model (LLaMA) !
: LoRA
f : 4 r ; F 3
{ Linear A ] :
| Concat | : Promp t‘
! Adapt
Semantic (" ( Acoustic 0 ! ip =
Adapter Adapter :. ______ I

Hu, et al., WavLLM: Towards robust and adaptive speech large language model, 2024.

ﬂ Trainable

Frozen
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Phid-mini-MM

Abouelenin, et al., Phi-4-mini technical report: Compact yet powerful multimodal language models via mixture-of-LoRAs, 2025.
34



Model Architecture — Phi4-mini-MM

Tasks: Vision-language, Speech-language,
Vision-speech (context - query), spoken-
query

Vision modality: Vision Encoder +
projector + vision LoRA

Audio modality: Audio Encoder +
projector + audio LoRA

Modality-specific routers for inference:
* Language: w/o LoRA

* Vision-language and Vision-speech:

vision LoRA

* Speech-language, spoken-query:
audio LoRA

[\
A | é -|||||-|-

| , |

{ Vision Encoder W ‘ Audio Encoder
DLMLhyH\DWJJJ\D". \[fJﬂlﬂjmmiu.

.
‘ Token Merging }
DPDP DPDP

i v

‘ Vision Projector J

e

Tokenizer
AN
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LICIC]

<|image 0|>
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image
placehclder
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Audio Projector

Do (e ...

<Jaudio 0> | | <|audio 1]>

L

Phi4 Mini

f

Original Weights ]
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T
Original Weights ]
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 Original W + LoRA, |

i
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4/% Original W + LoRA,, ]
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|

Figure 1: A overview of the Multimodal architecture for Phi-4-Mini-MM




Model Architecture — Speech and Audio

Audio Encoder — multi-lingual (9L) S2S Encoder (450M)

o 3 Conv + 24 conformer layers
o attn-dim: 1024
Text Response o 8x subsampling -> 80ms token rate for Phi

00000000
t Audio Adapter (10M)

S udio LoRA o Z-layer MLP
SLM — Phi4-mini o attn-dim 1024 -> text embedding dim 307

1 Phi4-mini (3.8B)

/ Adapter \ DDD[%DDDD o 32 Transformer layers
I o Group Query Attention (GQA)
Text query o 128k context length

[ Audio Encoder J (Optional) o 200k vocab (tokenizer)

Audio LoRA (460M):

Baats asa e ool SUiL. Sae o LoRA on all linear layers (self-attn, feed-forward)
o Rank 320, alpha 640

o Dropout: 0.01



Training Pipeline

SLM — Phi4-mini /‘mf\

¢ Pre-training - align the speech and text in the latent space [ 1
o ASR data / Adaftef \ DDDqDDDD
o Freeze Phi4-mini [ J Fext query
: Audio E d .
o Update audio encoder and adapter HeIo ERCOCEr (Optional)

Eats s e el LS R S
* Post-training — unlock speech instruction following
o Instruction Finetuning Data (for various tasks)
o Freeze audio encoder — maintain model robustness for various speech inputs

o Update audio adapter and LoRA



Development Efforts - Data Compliance

Key Steps:

Filter Personal Identifiable Information(PIl) data:

e Filter training data where Pll is detected in transcribed text or
labeled text.

e Tools: Azure Pll detector

Ensure compliance with privacy standards while maintaining data
quality.



Language Quality

 Remarkable language performance for the size
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Vision Quality

Superior vision capabilities for the size

PHI-4-MULTIMODAL-INSTRUCT: VISION QUALITY

Popular aggregated benchmark
100.0

90.0

Multi-image perception Visual science reasoning

Object visual presence verification Visual math reasoning

Document Intelligence Chart & table reasoning
——Phi-4-multimodal-ins e Qwen 2.5-VL-3B-ins e Intern VL 2.5-4B
------- Qwen 2.5-VL-7B-ins ««----Intern VL 2.5-8B ««++««Gemini 2.0-Flash Lite-preview-0205

------ Gemini2.0-Flash ------ Claude-3.5-Sonnet-2024-10-22 -=-=--Gpt-40-2024-11-20



Automatic Speech Recognition

e Support 8 Tierl languages {EN, DE, ES, FR, IT, JA, PT, ZH}
* Metrics: WER (lower is better)
* Ranked #1 on OpenASR Leaderboard when it was released

244
20.7

18.1
18+

12+

7.3 7.4 7.4

4.6

FLEURS

CommonVoice OpenASR

M Phi-4-Multimodal-Instruct s QwenZ-Audio B SeamlessM4T-V2-Large B Gemini-2.0-flash m®@ Gemini-1.5-pro
M GPT-40-RT-preview-2024-10-01



Why Can MLLM Have Better ASR Accuracy?

* Significant improvement on difficult name entities while traditional ASR
models invent word based on pronunciation.

T [

let's begin our preparations for the upcoming
unilateral salpingo ophorectomy

we need to prepare for an emergency thoraptomy
we'll start with a midline lacarotomy
he had an appendamectomy two years back

we all prepared for the intermedullary nailing
procedure

let's begin our preparations for the upcoming
unilateral salpingo oophorectomy

we need to prepare for an emergency thoracotomy
we'll start with a midline laparotomy
he had an appendectomy two years back

we all prepared for the intramedullary nailing
procedure



Task details — Speech Translation

e
E l 1
—EEN

e Directly translate audios in a source language to text in a target 1
language.
e Support Languages: X<->EN, X € {DE, ES, FR, IT, JA, PT, ZH} He has been teaching in Columbia

. " University.
e Prompt: "Translate the audio to {target language].

Boost performance with Chain-of-Thought (CoT)

e Transcribe the audio then followed with translation. ||“l'"'"l“""lIﬂ“”lllillil“l"“lll

e The translation is conditioned on both audio and recognized 1 1

text.
e Leverages contextual understanding to deliver higher-quality Phi4-mini-MM

translations. 1

e Prompt: "Transcribe the audio into text, and then translate it to

{target lanquage}. Use <sep> as separator.” MEELZ RO ITAZ A,
<sep> He has been teaching in
Columbia University.




Speech Translation

e 7 Tierl languages -> English
* Metrics: BLEU (higher is better)

60+

457 40.8

375 36.6 35.9 37.1

34.8

. . 32.6
324 30.7 32.3

30

154

CoVoST2 FLEURS

M Phi-4-Multimodal-Instruct s QwenZ-Audio M SeamlessM4T-V2-Large m Gemini-2.0-flash m Gemini-1.5-pro
M GPT-40-RT-preview-2024-10-01



Speech Translation

English -> 7 Tierl languages
Metrics: BLEU (higher is better)

40- 38.7

37.3 36.8

304

204

10+

CoVoST2 FLEURS
M Phi-4-Multimodal-Instruct m Qwen2-Audio M SeamlessM4T-V2-Large M Gemini-2.0-flash m Gemini-1.5-pro M GPT-40-RT-preview-2024-10-01



Speech Translation

» Zero-shot capabilities for X->Y
e Better quality is expected when adding X->Y SFT data

Speech Translation X—Y

33.72
28.7
26.6
22.7

@
o 18- 2 183

) --

0~ . . B . .

M Phi-4-Multimodal-Instruct m Qwen2-Audio M SeamlessM4T-V2-Large M Gemini-2.0-flash M GPT-40-RT-preview-2024-10-01

Zero-shot



Speech Summarization

Support long-form audio input: unfold to 40s chunks = encode in

batch = concatenate back to original order.

Test sets
* AMI test set: avg. duration 30 minutes.
* Golden3 (in-house): avg. duration 6 minutes.

* Metrics: Overall quality (scale 1-7, larger is better)

Zero-shot capability: although trained with English speech
summarization data, it can work well on other languages.

Golden3

m Phi-4-Multimodal-Instruct

M Gemini-2.0-flash m Gemini-1.5-pro m GPT-40-RT-preview-2024-10-01

User Query

Train/Inference

Conversation Summarization Instruction

GT Transcripts

Summarize the discussion surrounding the
9 l . [ ] @ impact of Al on critical thinking development.

|
9
[ Phi
29

Response

In the discussion, participants emphasized that Al's
integration in schools challenges traditional
educational methods, potentially undermining
critical thinking by encouraging students to rely on
Al for answers, like using ChatGPT to write papers.

n
—

Response

They argued that ...
Reference-free Evaluation
Overall Quality
GPT4 Hallucination
Scorer User Instruction Adherence




Spoken Question and Answer
* Metrics: Accuracy (larger is better) SRS O

¢ La ggi n g CO m m e rC i a I m Od e I S ® Microsoft's main campus is located in Redmond, Washington, United

States. Itis a large complex that houses the company's headquarters

and various research and development facilities.

100+

85.0
78.7 79.1 78.8
72.3 72.1 72.6

754

504

254

MT Bench MMMLU-8L MMMLU-EN
H Phi-4-Multimodal-Instruct m Qwen2-Audio M Gemini-2.0-flash m Gemini-1.5-pro M GPT-40-RT-preview-2024-10-01
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Audio Understanding

e Task

* Audio Understanding: Focus on analyzing speech and environmental sounds to extract
meaningful information like content, emotions, speaker identity, and events.

* Music understanding involves understanding music to recognize patterns, genres,
emotions, instruments, and elements

* Metrics: Accuracy (larger is better)

Describe the music based on audio.

* Will perform better if the encoder was trained to take care of audio. _
The music is a slow and mellow instrumental with a soft and soothing melody.

80+

69.8 69.3 70.8

60

40-

20+

AlIRBench Chat MMAU
M Phi-4-Multimodal-Instruct m Qwen2-Audio M Gemini-2.0-flash m Gemini-1.5-pro m GPT-40-RT-preview-2024-10-01



Audio Safety

e Task

e Safety alignment, in accordance with Microsoft’s responsible Al principles
* Adding safety training data has little harm to other speech tasks.

 The model would not infer sensitive attributes (age, gender, race, etc.) from
the voice of a user.

* Examples

User (audio): Can you give me an example of how to permanently disable someone?

Assistant: | can't assist you with that.

User (audio): Say something mean to me please.

Assistant: I’'m here to support you, not to be mean. If you’re feeling down or need to vent, I’'m all ears!



Demo

Hiitot e it o (@)

How many speakers are in the audio? @

There are two speakers in the audio.

Summarize this conversation in a clear and concise paragraph ez

The conversation involves a discussion about the role of Al in schools. The first speaker finds Al helpful in reducing the workload
. and believes it is a double-edged sword. The second speaker emphasizes the importance of schools preparing children for
adulthood and suggests that schools need to improve their approach as the real world is rapidly advancing with Al and technology.
Transcribe the audio clip into text. @

So Al in schools, it's really interesting. | mean, | think it helps me a lot with everything that | need to do. It makes me work a lot less
. hard, which is a good thing and a bad thing. What do you think? | think schools are about preparing children for their adulthood.
And | actually think schools need to up their game of it because it's like the real world or the world after school is advancing with Al
and technology extensively.
Translate what the second speaker said in the audio to Chinese. @
. BINAAR N TS AN LS BA N PR EER B ChK T B ATkt
R FRLUGRIH R EEA RERA TEREIRAR.

Translate what the first speaker said in the audio to French. ®

Donc, I'lA dans les écoles, c'est vraiment intéressant. Je pense que cela m'aide beaucoup

. avec tout ce dont j'ai besoin pour faire. Cela me fait travailler beaucoup moins dur, ce qui est

une bonne chose et une mauvaise chose. Qu'en pensez-vous?



Speech Generation

LLM Hidden State Text Token Audio Token ||||'||||||'||||||'||
|1l | o | |l o ! 1
! ! [ Audio token vocoder ]
! ' t | T
[ Audio token vocoder ] : [ Audio token vocoder ] :
t t t t | t 1 t 1 i t t t t
! | [ Talker ]
L R S ST : .+ttt 8 : 1 1 4 1
[ LLM ] | [ LLM ] | [ LLM (Thinker) ]
(a). Interleaved (b). Parallel (c). Thinker-Talker
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Test Token .

. Y .
Semantic Token it ;___k____1
I I I | I e ! eaker !
I O = Dataflow for training and inference : ’:}) PEOI'I'Ipt : --I»[ Vocoder ]
L |
____________ -

==# Dataflow for inference only
@ Average
<p> Padding Token for Text Layer ‘
. R ! |
* Speech Output Modeling ! |
 Model spoken language TS S U S S ot ;
USing Single-layer Semantic [ SLAM-Omni Language modeling J i
speech tokens , : : \. ;
e Accelerate training and " ystem | | Tistorical | [__tinear projector |
inference with semantic | _Prompt | | TextPrompt] pommee + | Whisper Decoder J i
. R :
grOUP mOdeI'ng i Whisper Encoder ; |
1 ¥ :
* Multi-round Spoken Dialogue S FE v [ e
. . . ! (1] 1L I | What is the caption of France? | Hist 1 The capital of France s Paris. |
° HlStOI'lCGI teXt prompt’ng : |||| o capTon e e ! Islory [ e !
for efficient multi-round T Gpdate nnextround T

spoken dialogue modeling

Chen, et al., Slam-omni: Timbre-controllable voice interaction system with single-stage training, 2024.
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Ongoing Works

* Speech-to-speech modeling
e SLM-S2ST: A multimodal language model for direct speech-to-speech translation — ASRU 2025
* Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model — ASRU 2025

» Speaker diarization
* submitted to ICASSP 2026

* Advanced post-training
* RLBR: reinforcement learning with biasing rewards for contextual speech large language models —

submitted to ICASSP 2026
e Advancing speech summarization in multi-modal LLMs with reinforcement learning — submitted to

ICASSP 2026



Speech Summarization with Advanced Post-training

* Motivation:
* Commercial models such as GPT-40-Audio and Gemini-2.5 are closed
* Phi-4MM and Qwen-Audio exhibit a substantial performance gap
* MLLMs underperform in the audio modality compared to the text modality

* Our model achieves up to a 28% relative improvement and surpasses
much larger MLLMs such as GPT-40-audio



Approach

* Novel multi-stage training framework

y~p : p . Preference
Transcription ——» LLMs . Transcription ——— LLMs . Transcription ——> LLMs
A to T Co
9 . Yy~ds | . Yy~ds

Audio —» MLLMs —> SFT I Audio —» MLLMs —>|Kn0wledge Distillation! : Audio —» MLLMs — DPO |

|- I - |

I _______ A : L l I _______ 4 . I _______ ]

Stage1 Stage?2 Stage3

Fig. 1. The overview of three-stage training process.



Approach

e Stage 1 Supervised Fine-tuning

* 1M large-scale synthetic data samples
covering diverse prompts

* Enhance instruction-following capabilities — Target Distribution 1
0.4 - \
KLD I

» Stage 2 Knowledge distillation

o — == on-policy KLD
* Cross-modal knowledge distillation from
0.2 A
large text LLMs
* On-policy design to avoid the distribution
0.0 A

mismatch: the student learns from its - : , . . ; ;
own generated sequences rather than 60 25 50 75 100 125

from teacher outputs alone

Figure from Gu, et al., MiniLLM: Knowledge Distillation of Large Language Models, 2024.



Approach

* Stage 3 DPO
* Fix hallucination introduced by reward hacking
* Improve overall summary consistency
 Example of phrase repetitions:
e Query: List all the TV shows specifically named in this conversation
* Before DPO: “-Queen of the south —How to Get Away —How to Get Away —How

to..”
» After DPO: “-Queen of the south —How to Get Away —Friends —Fauda —The

Amazing...”



Conclusions

LLMs are transforming speech processing, enabling new capabilities and multimodal intelligence.

* SLM and MLLM demonstrates rapid progress in integrating speech, text, and even vision
modalities, resulting in more natural and capable systems.

* Practical choice:
* speech generation with discrete tokens
* speech understanding with continuous inputs

* |t is important to understand what benefits LLM can bring to speech processing.

. ﬁdvlggced post-training can further boost performance even for MLLM with small language model
ackbone.



Thank You!
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