Speaker diarization a love story

Hervé Bredin the "pyannote" guy

- Tenured CNRS researcher since 2008
- Started working on speaker diarization back in 2012 (and never looked back)
- Started open-sourcing pyannote toolkit in 2015 (and don't regret it)
- Co-founded pyannoteAI in 2024 (on leave from CNRS since 2025)

What is speaker diarization?

Speaker recognition

supervised, utterance-wise binary classification

supervised, utterance-wise multi-class classification

supervised, frame-wise binary classification

Speaker diarization "who speaks when"

Speaker diarization(s)

- Batch speaker diarization assumes the whole conversation is available at once
- Streaming speaker diarization processes the conversation in "real-time" as it unfolds
- Longitudinal speaker diarization tracks speakers across multiple conversations

What for? "a means to an end"

Speaker diarization is an enabling technology for downstream applications.

 Speaker-attributed transcription meeting, call center, healthcare, court

- Voice assistant training **kyutai** Moshi
- Text-to-speech training Meta Audiobox
- Video translation with voice cloning
- Life logging (wearables)

What makes it difficult?

unknown number of speakers

overlapping speech (up to 40%)

unbalanced speaker time

How does it work?

"Historical" approach

feature extraction

speech activity detection

speaker change detection

speech turn representation

speech turn clustering

End-to-End Neural Diarization

- Sequence-to-sequence input: audio output: speaker probabilities
- Multi-label classification fixed number of speakers overlap-aware by design

Pros and cons

Multi-Stage Diarization

× propagation of errors

X hacky handling of overlapping speech

(relatively) easy to train

good at handling variable number of speakers

scale (almost) linearly with file duration

End-to-End Neural Diarization

one single step

- overlapping speech as first class citizen
- X difficult to train

X not so good at generalizing to previously unseen number of speakers

X does not scale with file duration

EEND-VC the best of both worlds

Speaker diarization a love loss story

Powerset multi-class cross entropy loss for neural speaker diarization

<u>Alexis Plaquet</u> & Hervé Bredin Interspeech 2023

Multi-latency look-ahead for streaming speaker diarization

Bilal Rahou & Hervé Bredin Interspeech 2024

PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings

Joonas Kalda, Clément Pagés, Ricard Marxer, Tanel Alumäe & Hervé Bredin Speaker Odyssey 2024

Speaker diarization a love loss story

Powerset multi-class cross entropy loss for neural speaker diarization

<u>Alexis Plaquet</u> & Hervé Bredin Interspeech 2023

Multi-latency look-ahead for streaming speaker diarization

Bilal Rahou & Hervé Bredin Interspeech 2024

PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings

Joonas Kalda, Clément Pagés, Ricard Marxer, Tanel Alumäe & Hervé Bredin Speaker Odyssey 2024

 $\mathcal{L} = \min_{p \in \mathcal{P}} \mathcal{L}_{BCE} \left(y, p(\hat{y}) \right)$ L

From multi-label to powerset encoding

- dedicated multi-speakers classes number of classes growing fast
- "regular" multi-class classification mutually exclusive classes cross-entropy loss (easier to train)
- thresholding replaced by argmax one less hyper-parameter to tune
- dedicated non-speech class to control VAD aggressiveness

Results DIHARD 3 benchmark (11 application domains)

 $DER = \frac{false \ alarm + missed \ detection + speaker \ confusion}{total \ speech}$

Speaker diarization a love loss story

Powerset multi-class cross entropy loss for neural speaker diarization

<u>Alexis Plaquet</u> & Hervé Bredin Interspeech 2023

Multi-latency look-ahead for streaming speaker diarization

Bilal Rahou & Hervé Bredin Interspeech 2024

PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings

Joonas Kalda, Clément Pagés, Ricard Marxer, Tanel Alumäe & Hervé Bredin Speaker Odyssey 2024

Streaming speaker segmentation Causal architecture?

Offline DER = 17.3%

 \mathbf{V}

- Sequence modeling bi-directional LSTM
- Feature extraction
 Sincnet trainable filterbank
 (with instance normalization) X
- Final classification frame by frame

Streaming speaker segmentation Look-ahead loss

Streaming speaker segmentation Look-ahead loss

predicted but not used $\hat{y}_{\rightarrow\lambda}$

Streaming speaker segmentation Latency/accuracy tradeoff

Streaming speaker segmentation *VAD on steroids*

Speaker diarization a love loss story

Powerset multi-class cross entropy loss for neural speaker diarization

<u>Alexis Plaquet</u> & Hervé Bredin Interspeech 2023

Multi-latency look-ahead for streaming speaker diarization

Bilal Rahou & Hervé Bredin Interspeech 2024

PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings

Joonas Kalda, Clément Pagés, Ricard Marxer, Tanel Alumäe & Hervé Bredin Speaker Odyssey 2024

some figures courtesy of Joonas Kalda

Speech separation Supervised permutation-invariant training (PIT)

Speech separation **Unsupervised** mixture-invariant training (MixIT)

"Unsupervised Sound Separation using Mixture Invariant Training" Wisdom et al. NeurIPS 2020

(b) Unsupervised mixture invariant training (MixIT). 28

Joint speaker diarization & separation two complementary tasks

- speaker activations can be used to guide separation
- separated sources can help assign overlapping speech to the right speakers
- why not train them jointly in a **semi-supervised** manner?
 - supervised diarization unsupervised separation

5 seconds chunks with diarization labels

P pyannoteA

3 speakers max

Diarization & separation Inference on long-form audio

stitched, and transcribed separately

Diarization & separation Inference on long-form audio

stitched, and transcribed separately

accounts for transcription and diarization errors

Table 2: The cpWER (%) on AMI-SDM for various ASR systems with speaker attribution (SA) done through diarization or the joint model

	ASR model	SA method	SA system	cpWER(%)				Relat
				sub	del	ins	total	Char
	Whisper small.en	Diarization	pyannote 3.1	8.7	27.2	3.7	39.6	
		Diarization	PixIT	8.5	27.3	2.1	37.9	-4.39
		Separation	PixIT	6.7	25.8	1.4	33.9	-14.4
	Whisper medium.en	Diarization	pyannote 3.1	7.4	28.0	3.4	38.8	
		Diarization	PixIT	7.3	27.8	2.0	37.1	-4.4%
		Separation	PixIT	5.9	25.8	1.2	32.8	-15.4
	Whisper large-v2	Diarization	pyannote 3.1	7.1	29.3	1.8	38.3	
		Diarization	PixIT	6.9	26.6	2.1	35.7	-6.79
		Separation	PixIT	5.6	24.7	1.3	31.7	-17.2
	NeMo conformer large	Diarization	pyannote 3.1	11.5	36.0	1.4	48.9	
		Diarization	PixIT	13.3	33.9	1.3	48.5	-0.89
		Separation	PixIT	13.4	24.6	1.4	39.4	-19.4

Democratizing seamless human interaction, grounded in scientific excellence

All things "speaker"

• <u>speaker</u> diarization

• <u>speaker</u> identification

- <u>speaker</u> separation
 - <u>speaker</u>-attributed transcription
 - streaming <u>speaker</u> diarization
 - streaming <u>speaker</u> identification
 - interactive <u>speaker</u> diarization

Resources

Hervé Bredin, PhD CSO, creator of pyannote.audio

Juan Coria, PhD CTO, creator of diart

Antoine Laurent, PhD researcher, co-inventor of pyannote diarization model

your name goes here

Jean Zay supercomputer 364 x 4 x H100 80Go

Speaker diarization

Without finetuning

Speaker-attributed transcription

Off the shelf faster-whisper-turbo

80

60

40

20

0

tcpWER

pyannoteAl labs

Hervé Bredin herve@pyannote.ai