Discrete Audio Tokens for Multimodal LLMs

Mirco Ravanelli

"Traditional" LLMs

- Language Models have a long history.
- Goal: Assign a probability to every sequence of words w

$$P(w_1, w_2, ..., w_N) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)...P(w_N|w_1, ..., w_{N-1})$$
$$= \prod_{i=1}^N P(w_i|w_1, ..., w_{i-1})$$

• A language model can be trained to predict the **next word** given **all the previous ones**.

Large Language Models

• **Dominant Approach**: autoregressive transformer trained to predict the next word.

Brute Force: Massively scaling up the model with more data and parameters results in impressive performance.

Why Multimodality?

A multimodal system can offer several advantages: •

Multimodal LLMs

• One way to train multimodal LLMs? **Tokenize** all!

How to Tokenize Audio?

• Audio and Speech are continuous!

• SSL models (e.g., wav2vec, HuBERT, WavLM) also produce continuous representations!

Audio Codes

Examples: SoundStream, Encodec

Semantic Tokens

Semantic Tokens

- Large self-supervised models (e.g., *Wav2vec*, *HuBERT*, *WaLM*) achieve **state-of-the-art** performance.
- These models are based on **continuous** representations
- We convert continuous representations into discrete tokens through **clustering**.

How Should We Extract Discrete Audio Tokens from Self-Supervised Models?

Pooneh Mousavi^{1,2}, Jarod Duret³, Salah Zaiem⁴, Luca Della Libera^{1,2}, Artem Ploujnikov^{5,2}, Cem Subakan^{6,2,1}, Mirco Ravanelli^{1,2,5}

- 1. Which layers should we cluster?
- 2. What is the optimal number of clusters?
- 3. Which datasets are we using for clustering?
- 4. What is the best approach to train the decoder (vocoder)?
- 5. How should we initialize the embeddings effectively?
- 6. Can we extract universal tokens for both discriminative and generative tasks?

Figure 3: Attention analysis across various tasks and layers of the discrete WavLM model with in-domain tokenizers.

- Automatic Speech Recognition (ASR)
- Emotion Recognition (ER)
- Speaker Identification (SI)

- Speech Enhancement (SE)
- Text-to-Speech (TTS)
- Scalable Vocoder (SV)

Table 1: Assessing the impact of the number of clusters and embedding initialization on discrete WavLM-Large across different tasks.

Setting	T	ASR (EN)	1	ASR (FR)	1	SID	1	ER	T	SE		1	TT	s
0	1	WER ↓	I	WER \downarrow		ACC ↑	Ι	ACC ↑	1	<i>DNSMOS</i> ↑	$dWER\downarrow$	Ι	<i>UTMOS</i> ↑	WER \downarrow
					Eff	ect of Nu	mbe	r Of Clus	ters					
1000	Ĩ	7.15	Ĩ	34.61	Ĩ	79.0	Ι	61.8	Ĩ	3.93	6.75	1	3.65	5.76
2000		6.96		32.94		79.5		67.2		3.93	6.58		3.55	5.62
				E	ffec	t of Embe	ddiı	ng Initiali:	zatio	on				
Random	Ĩ	6.96	T	32.94	I	81.0	Ι	67.2	T	3.93	6.75	T	3.65	5.76
PreTrained & finetune		8.93		35.81		77.5		63.9		3.93	6.82		3.64	6.62
PreTrained & freeze		9.26		35.12		73.1		67.0		3.93	6.98		3.66	6.42

- The optimal number of clusters varies by task.
- Typically, using 1000 to 2000 clusters yields good performance.
- There is no advantage observed in initializing the embedding with pretrained centroid embeddings.

Table 2: Out-of-domain and in-domain performance of discrete HuBERT and WavLM models across the downstream tasks.

SSL Model	Tokenizer	I	ASR (EN)	Ι	ASR (FR)	I	SID	I	ER	Ĩ	SE		I	TTS	3		Vocod	er
			WER \downarrow	Ι	WER \downarrow	I	ACC ↑	I	ACC ↑	T	DNSMOS ↑	dWER↓	I	<i>UTMOS</i> ↑	WER \downarrow		<i>UTMOS</i> ↑	dWER↓
HuBERT Large [4]	In-Domain Out-Of-Domain		7.89 N/A		38.29 39.50		67.2 67.8		64.5 61.7		3.98 3.95	17.64 15.92		3.61 3.54	6.46 5.45		3.50 3.48	4.49 2.92
WavLM Large [3]	In-Domain Out-Of-Domain		6.96 N/A		32.94 36.25		81.0 79.0		67.2 61.9		3.93 3.96	6.75 6.49		3.65 3.61	5.76 5.73		3.49 3.68	2.98 2.95

• As expected, the in-domain tokenizer outperforms its OOD counterpart.

• However, the performance drop is not always huge.

Are compression tokens better than semantic tokens?

Literature offers no clear answer

DASB - Discrete Audio and Speech Benchmark

DASB Code Repo

Pooneh Mousavi^{1,2}, Luca Della Libera^{1,2}, Jarod Duret³, Artem Ploujnikov^{4,2}, Cem Subakan^{5,2,1}, Mirco Ravanelli^{1,2,4} ¹Concordia University ²Mila - Quebec AI Institute ³Avignon Université ⁴Université de Montréal ⁵Université Laval

Tokenizer	Туре
Discrete HuBERT	Semantic
Discrete WavLM	Semantic
Discrete Wav2Vec2	Semantic
EnCodec	Compression
DAC	Compression
SpeechTokenizer	Hybrid

Task	Туре
Automatic Speech Recognition (ASR)	Discriminative
Speaker Identification/Verification (SID, SV)	Discriminative
Emotion Recognition (ER)	Discriminative
Intent Classification (IC)	Discriminative
Keyword Spotting (KS)	Discriminative
Speech Enhancement (SE)	Generative
Speech Separation (SS)	Generative
Text-to-Speech (TTS)	Generative

	ASH	R-En	ASR-n	nultiling	ER	IC	KS	SI	SV EER
Models/Tasks	WE	R↓	WI	E R ↓		ACC ↑			
	Clean	Other	Welsh Basque		1				
				Low Bitra	te				
Discrete Hubert	8.99	21.14	58.50	26.83	57.20	68.70	90.54	0.90	24.99
Discrete WavLM	11.72	27.56	60.37	28.63	59.80	73.40	97.94	0.70	26.02
Discrete Wav2Vec2	12.14	28.65	66.30	32.25	57.80	74.10	96.16	0.40	33.53
EnCodec	52.37	77.04	92.01	58.20	44.70	31.50	86.00	58.30	17.40
DAC	63.96	83.61	94.86	66.29	49.20	22.10	81.00	45.10	20.62
SpeechTokenizer	19.77	43.12	76.67	47.92	49.10	57.90	95.09	47.40	20.41
				Medium Bit	rate				
Discrete Hubert	7.91	18.95	54.77	23.63	62.10	70.50	94.69	67.40	15.71
Discrete WavLM	8.52	20.35	54.22	22.06	57.60	78.00	98.09	80.80	8.00
Discrete Wav2Vec2	8.76	21.32	60.39	26.64	59.10	75.10	96.64	65.47	17.64
EnCodec	46.80	74.24	91.23	47.95	51.30	31.40	88.70	91.90	7.81
DAC	59.54	81.48	97.43	56.16	45.80	18.90	76.60	83.80	11.78
SpeechTokenizer	18.32	41.21	75.17	38.94	52.10	57.80	94.86	91.40	7.88
				High Bitra	ite				
EnCodec	45.18	72.56	93.40	87.65	46.40	19.60	83.60	92.81	7.18
DAC	99.53	99.38	99.40	99.68	46.00	15.70	75.20	85.61	10.89
			С	ontinuous Ba	iseline				
SSI	3 370	7 04	41 77	14 32	63 10	86.10	00.00	09 70	2 10

- Semantic tokens

 outperform compression
 tokens in most
 discriminative tasks.
- The exception is **speaker recognition**, where EnCodec excels.
- Big gap compared to continuous baselines!

CC

nve	rged".		
TT	S		2 E.
DS ↑	dWER↓		
1	2 55	•	Semantic tokens show
1	3.01		the best performance for
2	3.45		
5	8.85		generative tasks as we
7	10.68		

Table 3: Benchmarking results for generative tasks. N.C. indicates "Not Con

CE

Models/Tasks		SE			22	115			
	DNSMOS ↑	dWER↓	SpkSim ↑	DNSMOS ↑	dWER \downarrow	SpkSim ↑	UTMOS ↑	dWER↓	
			Low	Bitrate					
Discrete HuBERT	3.33	15.47	0.824	3.52	80.86	0.840	3.24	2.55	
Discrete WavLM	3.26	16.52	0.830	3.43	62.34	0.847	3.84	3.01	
Discrete Wav2Vec2	3.55	18.86	0.779	3.75	96.70	0.787	3.32	3.45	
EnCodec	3.15	34.35	0.852	3.11	83.55	0.877	1.46	8.85	
DAC	3.30	57.41	0.853	3.01	102.00	0.854	1.97	10.68	
SpeechTokenizer	3.18	30.13	0.858	3.13	85.25	0.874	2.51	3.69	
			Mediu	m Bitrate					
Discrete HuBERT	3.48	12.62	0.875	3.70	66.29	0.891	3.80	3.40	
Discrete WavLM	3.48	10.18	0.889	3.68	34.03	0.912	3.82	2.45	
Discrete Wav2Vec2	3.54	17.60	0.858	3.75	78.42	0.866	3.68	2.89	
EnCodec	3.10	19.07	0.885	3.09	48.57	0.906	1.50	94.6	
DAC	3.49	31.14	0.906	3.26	55.43	0.924	1.71	71.26	
SpeechTokenizer	3.49	23.44	0.876	3.42	60.75	0.906	1.96	53.26	
			High	Bitrate					
EnCodec	2.87	68.22	0.814	2.95	97.73	0.839	N.C	N.C	
DAC	2.95	46.07	0.860	2.53	208	0.784	N.C	N.C	
			Continue	ous Baseline					
SSL	3.49	4.92	0.928	3.68	9.97	0.939	3.71	2.94	

performance for /e tasks as well

Big gap compared to continuous baselines

TTS Samples

1)

Ranking aggregation for models (medium bitrate)

Model	Disc.	Gen.	Comb.
Discrete HuBERT	2.66	3.62	3.11
Discrete WavLM	2.00	2.75	1.94
Discrete Wav2Vec2	3.33	2.68	3.41
EnCodec	4.11	3.93	4.23
DAC	5.55	4.06	4.64
SpeechTokenizer	3.44	3.81	3.64

• We are still **far** from an ideal solution!

- Semantic tokens are computationally expensive
- They don't preserve speaker identities well
- Performance drops significantly compared to continuous representations

Figure 2: Time and memory required to process an utterance of 16 seconds for encoders and decoders of the considered audio tokenizers on an NVIDIA GeForce RTX 3070 GPU @ 8 GB.

• Universal Audio Tokens

Some Ideas

- Massive Multitask learning (similar to <u>PASE</u>)
- **Hierarchical** codebooks with **Dynamic Allocation** (more details for Music)
- Perceptual Loss Optimization (Similar to <u>MetricGAN</u>)
- Better Multi-scale processing.

• Can we learn "interpretable" audio tokens?

Text: "The City of Montréal"

Tokenized: "[The] [City] [of] [Mont] [ré] [al]"

Each token is **easily interpretable**, as it maps to a specific part of the text.

Tokenized Audio

[56]	[12]	[26]	[18]
[73]	[57]	[23]	[32]
[38]	[09]	[78]	[61]

No clear mapping to the original signal

Interpretable Codebook

Possible Advantages

- Increased Transparency
- Easier Error Analyses
- Interpretability might act as a powerful regularizer, enhancing both generalization and performance.

Our Related Paper: <u>NeurIPS 2024</u>, <u>ICML 2024</u>

• Is audio tokenization the best way to go?

• Survey Paper and Extended Benchmark (in Progress)

Thank you!

Pooneh Mousavi

Artem Ploujnikov

Luca Della Libera

Jarod Duret

Salah Zaiem

Cem Subakan