@Conversational Al Reading Group, Feb. 13, 2025
Scalable and Efficient
Speech Enhancement

Minje Kim, Ph.D. Siebel School of Computing and Data Science Visiting Academic at Amazon Lab126 https://minjekim.com minje@illinois.edu



SIEBEL SCHOOL OF COMPUTING AND DATA SCIENCE GRAINGER ENGINEERING

#### **Outline**

#### $\,\circ\,$ Motivation

- General model compression for SE
- $\odot\,$  Personalization for Model Compression
  - Knowledge distillation
  - Mixture of local experts

- Scalable and Efficient Models
   BLOOM-Net
  - Cold diffusion
- $\odot$  Discussion



Sunwoo Kim



Aswin Sivaraman



Trausti Kristjansson



### **Motivation**

- Speech enhancement as a benchmark task

- $\odot\,$  Typical application goals of SE
  - High quality audio
    - Intelligibility, perceptual, subjectivity, etc.
  - Online/real-time processing
    - Low delay
  - On-device processing
    - Low complexity
- General-purpose SE
  - Works well but is too complex
- Model compression
- Speaker-agnostic model compression
- $\odot\,$  Scalable and efficient SE



Smaller Architecture







#### **Bitwise Neural Networks**

- The XOR Example





### **Bitwise Neural Networks**

- Efficiency in HW



**Power Consumption** 

#### Area Comparison

- Rough estimation without considering some constant overhead
- NanGate 45nm / DesignCompiler
- $\odot~$  Per each node



#### **BNN for Supervised Speech Denoising**

#### - Compared to a single-precision network



ICASSP 2018

### **BNN for Supervised Speech Denoising**

#### - Audio demo

|                     | Input Noisy Speech                    | Deep Learning<br>(Binary Input) | Bitwise                            |
|---------------------|---------------------------------------|---------------------------------|------------------------------------|
| Female + Typing     | $\left( \left( \circ \right) \right)$ |                                 | ()                                 |
| Female + Ocean      | $\square \mathbb{S}$                  |                                 |                                    |
| Female + Frogs      | $(( \circ )))$                        |                                 | $( \circ ) )$                      |
| Male + Eating Chips | $\square \mathbb{N}$                  |                                 | $\square \mathfrak{d} \mathbb{D} $ |
| Male + Jungle       | $( ( \circ ) ) )$                     |                                 | $( ( \circ ) )$                    |



#### **Bitwise Gated Recurrent Units**

#### - Audio demo



### **Boosted Hashing for Bitwise Source Separation**

#### - Overview



- $\odot\,$  Hashing can speed up the search
  - Search is based on Hamming similarity
- $\odot\,$  Hashing can degrade the performance
  - Hamming similarity vs. perceptual similarity
  - Needs some machine learning
- Adaboost + locality sensitive hashing

## Personalized Speech Enhancement



#### **Motivation**







M. Kolbæk, Z. H. Tan and J. Jensen, "Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems," IEEE/ACM TASLP, 2017.

#### **Motivation**

#### - Generalists vs. Specialists

| Noise Types  | Mixture<br>(Input) | Results from<br>the Best<br>Specialist | Results from<br>the Worst<br>Specialist |
|--------------|--------------------|----------------------------------------|-----------------------------------------|
| Bird Singing |                    |                                        |                                         |
| Typing       |                    |                                        |                                         |
| Motorcycle   |                    |                                        | $\left( \left( \circ \right) \right)$   |

- $\odot\,$  How to train a personalized SE system?
  - □ We don't have access to clean personal speech

### **Test-Time Model Adaptation**

- Knowledge distillation for PSE
- $\circ$  Pre-train a large teacher model  $\mathcal{T}$  for SE and freeze it Loss:  $\mathcal{L}(\hat{\mathbf{s}}_{\mathcal{T}} || \hat{\mathbf{s}}_{\mathcal{S}})$  Estimated in the set of the s
  - Generalizes well but is too big
- $\odot\,$  Pre-train a small, thus efficient student model  $\,\,\mathcal{S}$ 
  - But can make a mistake
  - No way to fix it on its own (lack of GT clean speech)
- $\odot~$  Test-time adaptation
  - Distill the teacher's outputs as pseudo-targets
  - Fine-tune the student
  - Assumption: teachers are better than students  $\mathcal{L}(\mathbf{s}||\hat{\mathbf{s}}_{\mathcal{T}}) < \mathcal{L}(\mathbf{s}||\hat{\mathbf{s}}_{\mathcal{S}})$
- $\,\circ\,$  Use-case scenario:
  - Only the student model is used during inference on the device
  - Fine-tuning occurs either on a cloud server or on-device during idle time





WASPAA 2021 (Kim & Kim); JASA 2024

### **Test-Time Model Adaptation**

- Knowledge distillation for PSE
- Manifold interpretation  $\bigcirc$



Manifold of General Clean Speech



### **Test-Time Model Adaptation**

- Knowledge distillation for PSE

| Models  |                 | MACs (G) | Param. (M) |
|---------|-----------------|----------|------------|
| Student | GRU (2×32)      | 0.010    | 0.08       |
|         | GRU (2×64)      | 0.011    | 0.17       |
|         | GRU (2×128)     | 0.026    | 0.41       |
|         | GRU (2×256)     | 0.071    | 1.12       |
|         | GRU (2×512)     | 0.216    | 3.42       |
|         | GRU (2×1024)    | 0.729    | 11.55      |
| Teacher | GRU (3×1024)    | 1.126    | 17.85      |
|         | ConvTasNet [28] | 9.831    | 4.92       |

- PSE consistently outperforms all pre-trained student models
  - More improvement on smaller architectures
- $\odot \tilde{S}_{CTN}$  always outperforms their corresponding  $\tilde{S}_{GRU}$
- $\,\circ\,$  Lossless network compression
  - □ 2 x 64  $\tilde{S}_{CTN}$  vs. 2 x 1024 S
    - ~66x lower MACs and parameters



### **Test-Time Model Selection**

- Speaker-Specific Sparse Ensemble of Specialists



Contrastive learning for noise-robust speaker embedding



### **Test-Time Model Selection**

- Speaker-Specific Sparse Ensemble of Specialists
- Speaker-specific specialists



- Finetuning helps
  - Can refine speaker groups
  - Can make the gating module robust

#### **Test-Time Model Selection**

- Speaker-Specific Sparse Ensemble of Specialists
- Baseline: a generalist GRU model
- $\,\circ\,$  All proposed models outperform the baseline
- By increasing *K*, performance increases
- $\,\circ\,$  Finetuning lifts the performance in all cases
- The smallest specialists is on par with a large generalist
  - □ A 95%-reduction in inference complexity
  - Plus a 50%-reduction in spatial complexity



GRU Hidden Size (# of Trainable Parameters)



# Scalable and Efficient Speech Enhancement



### **Motivation**

- Scalability and Efficiency
- Scalability in video coding
   Video codec adjusts bitrate



 $\odot$  Our goal: the trade-off between performance and resource usage

Speech enhancement quality vs model complexity

### **Motivation**







 $\circ 1M + 2M + 3M = 6M$  params

 Modules do not communicate, wasting computation

- BLOOM-Net is dependent on masking-based architectures
  - BLOOM-Net: BLOck-wise Optimization of Masking Networks
- Missing components: residual learning, milestone goals





### **Baseline 2: Iterative Inference Model (Cold Diffusion)**





#### **SESE via Modified Cold Diffusion**

#### - The Proposed Method





### Experimental Results (Voicebank + DEMAND)









#### Audio Demo #1



<mark>בר</mark>

ICASSP 2024

#### Audio Demo 2



ICASSP 2024



#### **Discussion**

- $\,\circ\,$  On-device inference is costly
  - Efficiency matters
- Task-aware adaptation can achieve high efficiency
  - e.g., personalized SE
  - Could be sensitive to domain mismatch
- $\odot\,$  Scalable models are underexplored

Riccardo Miccini et al., "Scalable Speech Enhancement with Dynamic Channel Pruning," ICASSP 2025 https://doi.org/10.48550/arXiv.2412.17121



#### References

- <u>Minje Kim</u> and Paris Smaragdis, "Bitwise Neural Networks," ICML
   Workshop on Resource-Efficient Machine Learning, 2015 [pdf]
- <u>Minje Kim</u> and Paris Smaragdis, "Bitwise Neural Networks for Efficient Single-Channel Source Separation," ICASSP 2018 [pdf]
- <u>Sunwoo Kim</u>, <u>Mrinmoy Maity</u>, and <u>Minje Kim</u>, "Incremental Binarization On Recurrent Neural Networks for Single-Channel Source Separation," ICASSP 2019 [pdf, code]
- <u>Sunwoo Kim</u>, <u>Haici Yang</u>, and <u>Minje Kim</u>, "Boosted Locality Sensitive Hashing: Discriminative Binary Codes for Source Separation," ICASSP 2020 [pdf, <u>demo</u>, <u>code</u>, <u>presentation video</u>]
   <Finalist for the Best Student Paper Award>
- <u>Sunwoo Kim</u> and <u>Minje Kim</u>, "Boosted Locality Sensitive Hashing: Discriminative, Efficient, and Scalable Binary Codes for Source Separation," *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 30, pp. 2659-2672, Aug. 2022 [pdf, demo, code, presentation video]
- <u>Minje Kim</u>, "Collaborative Deep Learning for Speech Enhancement: A Run-Time Model Selection Method Using Autoencoders," ICASSP 2017 (pdf)

- <u>Sunwoo Kim</u> and <u>Minje Kim</u>, "Test-Time Adaptation Toward Personalized Speech Enhancement: Zero-Shot Learning With Knowledge Distillation," WASPAA 2021 [pdf, code, demo, presentation video]
- <u>Sunwoo Kim</u>, Mrudula Athi, Guangji Shi, <u>Minje Kim</u>, and Trausti Kristjansson, "Zero-Shot Test-Time Adaptation Via Knowledge Distillation for Personalized Speech Denoising and Dereverberation," *Journal of Acoustical Society of America*, Vol. 155, No. 2, pp 1353-1367, Feb. 2024 [pdf]
- <u>Aswin Sivaraman</u> and <u>Minje Kim</u>, "Sparse Mixture of Local Experts for Efficient Speech Enhancement," Interspeech 2020
   [pdf, demo, code, presentation video]
- <u>Aswin Sivaraman</u> and <u>Minje Kim</u>, "Zero-Shot Personalized Speech Enhancement Through Speaker-Informed Model Selection," WASPAA 2021 [pdf, code, presentation video]
- <u>Sunwoo Kim</u> and <u>Minje Kim</u>, "BLOOM-Net: Blockwise Optimization for Masking Networks Toward Scalable and Efficient Speech Enhancement," ICASSP 2022 [pdf, demo, code, presentation video]
  - <u>Minje Kim</u> and Trausti Kristjansson, "Scalable and Efficient Speech Enhancement Using Modified Cold Diffusion: a Residual Learning Approach," ICASSP 2024 [pdf, demo].





# Thank You! (Q&A)

Minje Kim, Ph.D. https://minjekim.com minje@illinois.edu

SIEBEL SCHOOL OF COMPUTING AND DATA SCIENCE

GRAINGER ENGINEERING