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Motivation

- Speech enhancement as a benchmark task
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O Typical application goals of SE
o High quality audio
« Intelligibility, perceptual, subjectivity, etc.
o Online/real-time processing
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O On_deV|Ce proceSS|ng Smaller Architecture Enhancement
« Low complexity Model
O General-purpose SE G (s W)
o Works well but is too complex 0.290074 .
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O Model compression 5

O Speaker-agnostic model compression Noisy Speech « = F(s,n)
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Bitwise Neural Networks
- The XOR Example
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v Bitwise Neural Networks (BNN)
CAN solve non-linear problems

ICML Workshop 2015
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Bitwise Neural Networks
- Efficiency in HW

Area Comparison Power Consumption

o 1969
7000 1 6256 —_— 2000 == —
6000 I — s
5000 e 1500 —
4000 + T P NN
m W 1000 - .
HM™ 5000 — M o
[ —— |
2000 - _—
1000 |y 93 500 | ] 246
L L
32-bit T 32-bit T/
Floating 16-bit Fixed Binary Floating 16-Pit Fixed Binary
Point Point Point Point

O Rough estimation without considering some constant overhead
O NanGate 45nm / DesignCompiler
O Per each node

ICML Workshop 2015, Experiments done by Wooil Kim
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BNN for Supervised Speech Denoising

- Compared to a single-precision network
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ICASSP 2018
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BNN for Supervised Speech Denoising

- Audio demo

Deep Learning

(Binary Input) Bitwise

Input Noisy Speech

Female + Typing C D)) C D)) )

Female + Ocean [: [: ) [:

Female + Frogs C D)) ) Q)

Male + Eating Chips [ [ [

Male + Jungle C ) g g)

E ICASSP 2018
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Bitwise Gated Recurrent Units

- Audio demo
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Boosted Hashing for Bitwise Source Separation
- Overview
Index to the < NN

ore, 7] O Hashing can speed up the search
AAMAA_ Speech \

Noise o Search is based on Hamming similarity
V Mask YT ) .
1 O Hashing can degrade the performance
NN search — o Hamming similarity vs.
Mixture Yo perceptual similarity
spectrum . . )
testing)  Hashing 0 Needs some machine learning
— H,. H, hiasing O Adaboost + locality sensitive hashing
. > 90 vector
%D masking dictionary
Mixture
spectra
dictionary
Estimated |
masking %T}C,: Y’r;c,:
vector
Hashing
Average
E ICASSP 2020; IEEE/ACM TASLP 2022
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Speech Enhancement
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Motivation

- Generalists vs. Specialists
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Motivation

- Generalists vs. Specialists

Results from Results from
Noise Types the Best the Worst
Specialist Specialist

Bird Singing

Motorcycle

O How to train a personalized SE system?
o We don’t have access to clean personal speech

E ICASSP 2017
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est-Time Model Adaptation
- Knowledge distillation for PSE

O Pre-train a large teacher model 7 for SE and freeze it Loss: £($7|8s) « 57 Estimated Clean Speech
Y by the|Teacher

o Generalizes well but is too big >/ 1 X
. - =/ |Ss [Teacher T
O Pre-train a small, thus efficient student model S S/ |Estimated (Frozen) i
o But can make a mistake £ |Clean
o No way to fix it on its own (lack of GT clean speech) L |Speech
_ _ \ by the Student
O Test-time adaptation S dern®
o Distill the teacher’s outputs as pseudo-targets VY 2N %
o Fine-tune the student \
o Assumption: teachers are better than students s A= - /

L(sl|s7) < L(s]lss) 1
] Test-Time Noisy Utterance
O Use-case scenario:

o Only the student model is used during inference on the The fine-tuned copy is —
device deployed back to the device Student &
o Fine-tuning occurs either on a cloud server or on-device as needed (€C) ", e

during idle time

E WASPAA 2021 (Kim & Kim); JASA 2024
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est-Time Model Adaptation

- Knowledge distillation for PSE. Manifold of General Clean Speech

© Manifold interpretaton Manifold of § 5, before personalization

—— Manifold of Personal Clean Speech

oisy Speech Y @ —— Manifold of Estimated Personal Speech S+

----- Manifold of § & after personalization

N
PAY

X

Clean Speech X

E WASPAA 2021 (Kim & Kim); JASA 2024
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est-Time Model Adaptation
- Knowledge distillation for PSE

Models | MACs (G) | Param. (M) S ] §GRU ] §CTN B Tery AN
GRU (2x32) 0.010 0.08
GRU (2x64) 0.011 0.17 13
Student |_ORU (2x128) 0.026 04T
- - T
CoSe [ o 1 gy, S R R |y AR
GRU((2><1024)) 07770 T35 Z T ] I Sl T * B * i x |
X . . — [ T | |
. o | | | I 1
Teacher | ORU (3x1024) 1.126 1'7.85 o 717 8* | 8‘ I 8**8 | *EIZ | maz | g
ConvTasNet [28] 0.831 4.92 wn I ! 1 — —— 11 L 1
- - 1L + | +
¥ 4‘ S | =
o PSE consistently outperforms all pre-trained | L B
student models 1 - . . . . . .
_ _ 32 64 128 256 512 1024 Teacher
O More improvement on smaller architectures # of Student's Hidden Units
o Scry always outperforms their corresponding Sgry
O Lossless network compression
O 2X64 ScryVs.2x1024S
+ ~66x lower MACs and parameters
E WASPAA 2021 (Kim & Kim); JASA 2024
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est-Time Model Selection

- Speaker-Specific Sparse Ensemble of Specialists

[ T T R 15 0— .
o Speaker-specific subproblem o 1 ol ]
Speech Enhancement Problem Space i ] ) ]
ek B ‘;
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O Contrastive learning for noise-robust speaker embedding

If i and € ARE from the same speaker 1 0 If ; andx; are NOT from the same speaker
U(zzzj) Sigmoid output
Embedding  Z; K-means clustering on this
Encoding  f(;) dentical
networks

Input Noisy Speech I; O

E WASPAA 2021 (Sivaraman & Kim)
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est-Time Model Selection

- Speaker-Specific Sparse Ensemble of Specialists

O Speaker-specific specialists

- Adaptation
Probability over by selection
K specialists k* = arg max py 5(k)

I
[p17p27 T 7pK] Personalized
Enhancement é(K)
Result
Softmax
Noise-Robust [~ Gating™ 1 st k th K th
Speaker Embedding l=Module Specialist " |Specialist] "°° Specialist
Encoder
(Siamese)
—
: : Noisy Speech
O Finetuning helps Y =P
o Can refine speaker groups
o Can make the gating module robust
E WASPAA 2021 (Sivaraman & Kim)
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est-Time Model Selection s

- Speaker-Specific Sparse Ensemble of Specialisgsg)

O Baseline: a generalist GRU model

8.0

O All proposed models outperform the baseline

]

O By increasing K, performance increases 7.5

O Finetuning lifts the performance in all cases .

O The smallest specialists is on par with a large
generalist

Baseline

Ens. K=2
Ens. K=2 FT
Ens. K=5
Ens. K=5FT
Ens. K=10
Ens. K=10 FT

SI-SDR Improvement [dB]

6.5

o A 95%-reduction in inference complexity o

0 Plus a 50%-reduction in spatial complexity
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GRU Hidden Size (# of Trainable Parameters)
WASPAA 2021 (Sivaraman & Kim)
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Motivation
- Scalability and Efficiency

O Scalability in video coding
O Video codec adjusts bitrate

O Our goal: the trade-off between performance and resource usage
O Speech enhancement quality vs model complexity
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Motivation
- A naive scalable SE system and BLOOM-Net

BLOOM-Net
(mid-sized)
Naive Scalable SE System
ek SE gt
Wee Little odule
SE Module 4
Weak SE
————»a(1)
T Module S
z i
ol1lM+2M + 3M = 6M params o BLOOM-Net is dependent on masking-based architectures
o Modules do not communicate o BLOOM-Net: BLOck-wise Optimization of Masking Networks
wasting computation O Missing components: residual learning, milestone goals

E ICASSP 2022
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Baseline 1: Ordinary One-Shot Inference Model
- Modified cold diffusion for SESE
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Baseline 2: Iterative Inference Model (Cold Diffusion)

_ M Od Ifl ed C Ol d d I-I'-fus IonfGr‘SESE ..............................................
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Q _____ D(q, T_1)’O ..................................... o LT—1
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O Best-effort restoration, all the time, i.e., complex

O Intermediate results’ performance is not guaranteed

H. Yen et al., “Cold diffusion for speech enhancement,” ICASSP 2023
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SESE via Modified Cold Diffusion

- The Proposed Method

Intermediate Results

RV (@r 1) R (xr)
RY) (1) R
Z%O (5 :"-b LT -2 » fg‘_l

Milestone Goals

E ICASSP 2024
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Experimental Results (Voicebank + DEMAND)

Baseline 1 Baseline 2 (Cold Diffusion) ResSESE
45 45 190% 45
4 4 l 4
E \
% 35 35 3.5
E Unprocessed SIR: 8.66
S 3 3 3
o DCCRN-S (T=5, t=1)
g 25 25 25 SIR: 12.20 dB (+3.54)
g SAR: 31.44 dB
g 2 2 2 Sounds gentle
3 Less oversuppression
8 15 L 32% 15 15 PP
-
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E ICASSP 2024
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Audio Demo #1

Noisy Input 7 SMR = -Inf dB

E ICASSP 2024
A)



Audio Demo 2

Noisy Input 7 SMR = -Inf dB

E ICASSP 2024
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Discussion

O On-device inference is costly
o Efficiency matters

O Task-aware adaptation can achieve high efficiency
O e.g., personalized SE
o Could be sensitive to domain mismatch

O Scalable models are underexplored

NO 5y M llss
Riccardo Miccini et al., B ks
“Scalable Speech Enhancement
with Dynamic Channel Pruning,” Al
ICASSP 2025
https://doi.org/10.48550/arXiv.2412.17121 Riccardo Miceini 0 M2 —

(Technical University of Denmark; GN Audio/Jabra) Tirrm
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