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Motivation
- Speech enhancement as a benchmark task

○ Typical application goals of SE

High quality audio

• Intelligibility, perceptual, subjectivity, etc.

Online/real-time processing

• Low delay

On-device processing

• Low complexity

○ General-purpose SE

Works well but is too complex

○ Model compression

○ Speaker-agnostic model compression

○ Scalable and efficient SE
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Bitwise Neural Networks
- The XOR Example

ICML Workshop 2015
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Bitwise Neural Networks (BNN) 

CAN solve non-linear problemsV
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Bitwise Neural Networks
- Efficiency in HW

○ Rough estimation without considering some constant overhead

○ NanGate 45nm / DesignCompiler

○ Per each node

ICML Workshop 2015, Experiments done by Wooil Kim
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BNN for Supervised Speech Denoising
- Compared to a single-precision network

ICASSP 2018
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BNN for Supervised Speech Denoising
- Audio demo

Input Noisy Speech

Female + Typing

Female + Ocean

Female + Frogs

Male + Eating Chips

Male + Jungle

ICASSP 2018

Deep Learning

(Binary Input)
Bitwise
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BGRU (𝜋 = 1.0)

1.6

3.2

4.8

6.4

8.0

k

GRU

1.6

3.2

4.8

6.4

8.0

k

Bitwise Gated Recurrent Units
- Audio demo
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Boosted Hashing for Bitwise Source Separation
- Overview

○ Hashing can speed up the search

Search is based on Hamming similarity

○ Hashing can degrade the performance

Hamming similarity vs. 

perceptual similarity

Needs some machine learning

○ Adaboost + locality sensitive hashing
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ICASSP 2020; IEEE/ACM TASLP 2022
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Personalized 
Speech Enhancement



Motivation
- Generalists vs. Specialists
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M. Kolbæk, Z. H. Tan and J. Jensen, "Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems," IEEE/ACM TASLP, 2017.
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Motivation
- Generalists vs. Specialists

○ How to train a personalized SE system?

We don’t have access to clean personal speech 
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Test-Time Model Adaptation
- Knowledge distillation for PSE

○ Pre-train a large teacher model     for SE and freeze it

Generalizes well but is too big

○ Pre-train a small, thus efficient student model

But can make a mistake

No way to fix it on its own (lack of GT clean speech)

○ Test-time adaptation

Distill the teacher’s outputs as pseudo-targets

Fine-tune the student

Assumption: teachers are better than students

○ Use-case scenario:

Only the student model is used during inference on the 
device

Fine-tuning occurs either on a cloud server or on-device 
during idle time
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Test-Time Noisy Utterance

Estimated Clean Speech 

by the Teacher

Teacher

(Frozen)

Student

Estimated

Clean
Speech
by the Student

Loss:

Student
The fine-tuned copy is

deployed back to the device

as needed (CC)

WASPAA 2021 (Kim & Kim); JASA 2024



Test-Time Model Adaptation
- Knowledge distillation for PSE

○ Manifold interpretation
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WASPAA 2021 (Kim & Kim); JASA 2024

Manifold of Personal Clean Speech

Manifold of General Clean Speech

Noisy Speech

Clean Speech

Manifold of      , before personalization

Manifold of      , after personalization

Manifold of Estimated Personal Speech 



Test-Time Model Adaptation
- Knowledge distillation for PSE
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WASPAA 2021 (Kim & Kim); JASA 2024

○ PSE consistently outperforms all pre-trained 

student models

More improvement on smaller architectures

○ ሚ𝑆𝐶𝑇𝑁 always outperforms their corresponding ሚ𝑆𝐺𝑅𝑈

○ Lossless network compression

2 x 64 ሚ𝑆𝐶𝑇𝑁 vs. 2 x 1024 𝑆

• ~66x lower MACs and parameters

2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

(a) -5 dB Mixture SNR (b) 0 dB Mixture SNR

(c) 5 dB Mixture SNR (d) 10 dB Mixture SNR

Figure 2: Comparison of SE performances from pre-trained generalists against personalized specialists under various mixture SNR levels.
Student models are initialized as 2-layered GRU generalists. Teacher models areprovided as references.

S̃CTN, always outperform their corresponding ones fine-tuned using
the GRU teacher, S̃GRU. Given that each student pair in comparison
are stemmed from the same pre-trained GRU model, it showcases
that the quality of the teacher model’s performance is related to the
performance of fine-tuning. It is also noticeable that the structural
discrepancy between thestudent and teacher, i.e., S̃CTN (aGRU) and
TCTN (a CTN), isnot an issue.

The smaller student models show more significant improve-
ments via PSE. Hence, it verifies that PSE is a model compression
method, because a smaller personalized model can compete with a
largegeneralist (e.g. 2⇥32 S̃CTN vs. 2⇥1024 SGRU for -5 dB mix-
tureSNR asin Figure2a). According to Table1, apersonalized 2⇥
32 specialist saves 11.47M parameters and 719M MACs compared
to a 2⇥ 1024 generalist (for 1-second inputs). Likewise, instead of
increasing generalists’ architectures for better generalization capa-
bilities, it ismore advantageous to personalize the models.

When the teacher model is better than the student by only a
small margin, personalized student models are even able to outper-
form the relative teacher model, i.e., S̃GRU (2 ⇥ 1024) vs. TGRU (3
⇥ 1024). We believe it is because of the student model’s dedicated
exposure to the test-time environment during finetuning.

We envision a scenario where the fine-tuning procedure can be
done on the cloud, where the residing teacher model updates the
small student model. To this end, the small student model needs
to be transferred from the cloud server to the user device, which
may not be burdensome given its small size. The cloud comput-
ing option is also convenient, as the finetuning step do not need to
wait for the teacher model to denoise the test signals, which is an
energy- and time-consuming process to be conducted in the small
device. Likewise, frequent updates to the student does not become

burdensome for the device. Since our framework is simple, we ex-
pect our framework to provide improvements under different data
or loss functions, and even be applicable to other domains.

5. CONCLUSION

In this paper, we proposed a simple zero-shot learning framework
that utilizes knowledge distillation to fine-tune a speech enhance-
ment model during test-time, which we call personalization. By
utilizing the teacher’s estimates as the targets, which otherwise do
not exist during the test time, we showed that the student model’s
performance greatly improves on a specific test-time speaker and
the acoustic environment. Since our small personalized student
model can give superior performances to large generalist models,
we claim that the knowledge distillation-based fine-tuning method
providesanother modeof model compression that doesnot sacrifice
performance. Our framework is flexible as it can employ heteroge-
neous model architectures within a teacher-student pair. Our zero-
shot personalization procedure does not require any ground-truth
cleanspeech signalsfrom thetest-timeuser, making it moremindful
about users’ privacy. Finally, weenvision that PSE can beasolution
to improving the model’s performance on the user groups that are
underrepresented in the training set. The source codes and sound
examples are available at: ht t ps: / / sai ge. si ce. i ndi ana.
edu/ r esear ch- pr oj ect s/ KD- PSE.

6. REFERENCES
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Test-Time Model Selection
- Speaker-Specific Sparse Ensemble of Specialists
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WASPAA 2021 (Sivaraman & Kim)

○ Speaker-specific subproblem

○ Contrastive learning for noise-robust speaker embedding

Speech Enhancement Problem Space

Speaker Group A Speaker Group B

Speaker Group C Speaker Group D

Identical
networks

Input Noisy Speech

Encoding

Embedding

If       and      ARE from the same speaker If      and      are NOT  from the same speaker

Another utterance

Sigmoid output

K-means clustering on this



Test-Time Model Selection
- Speaker-Specific Sparse Ensemble of Specialists
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WASPAA 2021 (Sivaraman & Kim)

○ Speaker-specific specialists

 

○ Finetuning helps

Can refine speaker groups

Can make the gating module robust
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Test-Time Model Selection
- Speaker-Specific Sparse Ensemble of Specialists

○ Baseline: a generalist GRU model

○ All proposed models outperform the baseline

○ By increasing K, performance increases

○ Finetuning lifts the performance in all cases

○ The smallest specialists is on par with a large 

generalist

A 95%-reduction in inference complexity

Plus a 50%-reduction in spatial complexity
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WASPAA 2021 (Sivaraman & Kim)
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○ Scalability in video coding

Video codec adjusts bitrate

Motivation
- Scalability and Efficiency
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○ Our goal: the trade-off between performance and resource usage

Speech enhancement quality vs model complexity

Monday morningFriday night



Motivation
- A naïve scalable SE system and BLOOM-Net

○                                           params

○ Modules do not communicate, 
wasting computation
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○ BLOOM-Net is dependent on masking-based architectures

BLOOM-Net: BLOck-wise Optimization of Masking Networks

○ Missing components: residual learning, milestone goals
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Baseline 1: Ordinary One-Shot Inference Model
- Modified cold diffusion for SESE
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Baseline 2: Iterative Inference Model (Cold Diffusion)
- Modified cold diffusion for SESE

○ Best-effort restoration, all the time, i.e., complex

○ Intermediate results’ performance is not guaranteed
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H. Yen et al., “Cold diffusion for speech enhancement,” ICASSP 2023



SESE via Modified Cold Diffusion
- The Proposed Method
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Milestone Goals

Intermediate Results



Experimental Results (Voicebank + DEMAND)
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Audio Demo #1
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Audio Demo 2
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Discussion

○ On-device inference is costly

Efficiency matters

○ Task-aware adaptation can achieve high efficiency

e.g., personalized SE

Could be sensitive to domain mismatch

○ Scalable models are underexplored
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Riccardo Miccini et al., 

“Scalable Speech Enhancement 

with Dynamic Channel Pruning,” 

ICASSP 2025

https://doi.org/10.48550/arXiv.2412.17121 Riccardo Miccini 

(Technical University of Denmark; GN Audio/Jabra)

https://doi.org/10.48550/arXiv.2412.17121
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