

CR-CTC: Consistency regularization on CTC for improved speech recognition

Zengwei Yao, 20250330

Background

- End-to-end approaches for automatic speech recognition (ASR)
 - Connectionist Temporal Classification (CTC)
 - Transducer (also known as RNN-T)
 - Combining CTC and attention-based encoder-decoder (AED), referred to as CTC/AED
- Among these, **CTC** is the simplest and most computationally efficient
- However, it significantly **lags behind transducer and CTC/AED in recognition performance**, which limits its applicability.

Consistency-Regularized CTC (CR-CTC)

- Different augmented views
 - a) Time warping before duplicating
 - b) Duplicate -> two copies
 - Random frequency masking and time masking on two copies (using larger amount of time masking)
- Consistency regularization loss
 - Bidirectional D_{KL} on each pair of distributions at frame t

•
$$\mathcal{L}_{CR}(\mathbf{z}^{(a)}, \mathbf{z}^{(b)}) = \frac{1}{2} \sum_{t=1}^{T} D_{KL}(\operatorname{sg}(z_{t}^{(b)}) || z_{t}^{(a)}) + D_{KL}(\operatorname{sg}(z_{t}^{(a)}) || z_{t}^{(b)})$$

- Overall loss:
 - $\mathcal{L} = \frac{1}{2} \left(\mathcal{L}_{CTC}(\mathbf{x}^{(a)}, \mathbf{y}) + \mathcal{L}_{CTC}(\mathbf{x}^{(b)}, \mathbf{y}) \right) + \alpha \mathcal{L}_{CR}(\mathbf{z}^{(a)}, \mathbf{z}^{(b)})$

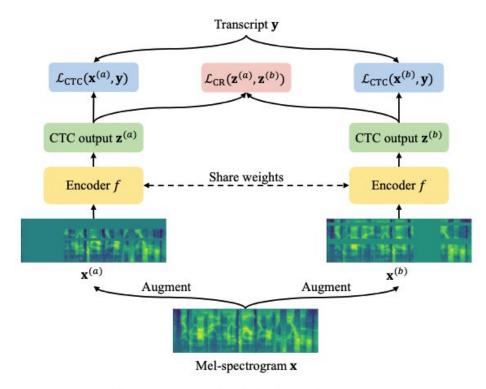


Figure 1: Overall architecture of CR-CTC.

Explanations (1/3)

- Self-distillation
 - Using dropout and stochastic depth: implicitly training randomly sampled sub-models -> ultimately combined into an ensemble during inference
 - CR-CTC performs self-distillation between pairs of randomly sampled sub-models, with each sub-model receiving supervision signals in the form of per-frame predictions from the other
 - Using different augmented views (with larger amount of time masking) exposes these sub-models to varied aspects of the input data -> enhancing their prediction diversity -> richer knowledge transfer

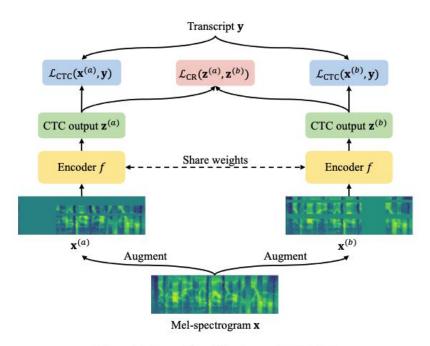


Figure 1: Overall architecture of CR-CTC.

Explanations (1/3)

- Self-distillation
 - No larger time masking, no different augmented views -> worse results
 - Hard-label CE-based \mathcal{L}_{CR} only distills the best alignment, while the D_{KL} -based \mathcal{L}_{CR} distills the full CTC distribution
 - Remove sg in \mathcal{L}_{CR} -> the model might have a tendency towards a degenerated solution that is insensitive to the pattern of input masking and model dropout.

Table 4: Ablation studies for self-distillation in *CR-CTC* on LibriSpeech dataset using Zipformer-M encoder and greedy search decoding.

Method	WER (%)		
Wethod	test-clean	test-other	
CTC baseline	2.51	6.02	
CR-CTC (final)	2.12	4.62	
No larger time masking	2.19	4.98	
No larger time masking, no different augmented views	2.27	5.11	
Use hard-label CE-based $\mathcal{L}_{\mathrm{CR}}$	2.14	4.84	
Remove sg in $\mathcal{L}_{\mathrm{CR}}$	2.24	4.97	

Explanations (2/3)

- Masked prediction
 - CR-CTC requires frames within the time-masked regions in each branch to predict the corresponding token distributions
 - Similar to masked-based self-supervised models, this
 behavior encourages the model to capture acoustic
 information on the unmasked context and exploit its implicit
 language modeling capability
 - Different augmented views -> reduces the occurrence of positions masked by both branches -> improve the quality of the provided target distributions for these masked positions
 - Larger amount of time masking -> enhance contextual representation learning through the masked prediction behavior

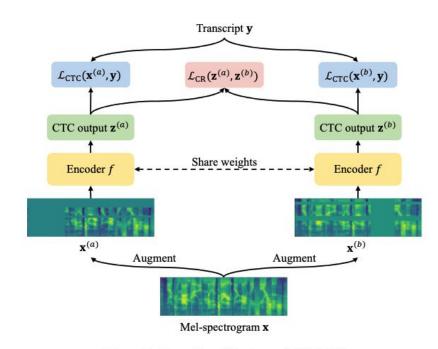


Figure 1: Overall architecture of CR-CTC.

Explanations (2/3)

- Masked prediction
 - No larger time masking, no different augmented views -> worse results
 - Larger amount of frequency masking -> slightly worse result
 - Larger amount of time masking in CTC baseline -> worse result
 - Excluding self-masked frames leads to a larger WER degradation than excluding self-unmasked frames

Table 5: Ablation studies for masked prediction in *CR-CTC* on LibriSpeech dataset using Zipformer-M encoder and greedy search decoding.

Method	WER (%)		
Wethod	test-clean	test-other	
CTC baseline	2.51	6.02	
Use larger time masking	2.68	6.28	
CR-CTC (final)	2.12	4.62	
No larger time masking	2.19	4.98	
No larger time masking, no different augmented views	2.27	5.11	
No larger time masking, use larger frequency masking	2.26	4.98	
Exclude self-masked frames in $\mathcal{L}_{\mathrm{CR}}$	2.32	5.26	
Exclude self-unmasked frames in $\mathcal{L}_{\mathrm{CR}}$	2.32	5.02	

Explanations (3/3)

- Peak suppression
 - CTC tends to learn extremely peaky distributions, suggesting potential overfitting
 - CR-CTC guides the model to learn the average of their prediction -> smoother distributions -> reduces overconfidence -> better generalization
 - Smooth-regularized CTC (SR-CTC)
 - Apply a smooth kernel K = (0.25, 0.5, 0.25)
 - $\mathbf{z}^{(s)} = smooth(\mathbf{z}, K)$
 - $\mathcal{L}_{SR}(\mathbf{z}, \mathbf{z}^{(s)}) = \sum_{t=1}^{T} D_{KL}(\operatorname{sg}(z_t^{(s)})||z_t)$
 - $\mathcal{L} = \mathcal{L}_{CTC}(\mathbf{x}, \mathbf{y}) + \beta \mathcal{L}_{SR}(\mathbf{z}, \mathbf{z}^{(s)})$

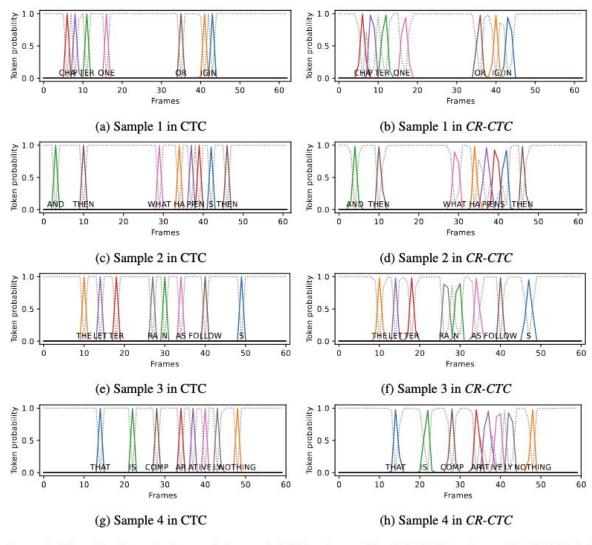


Figure 2: Visualization of token emitting probabilities for vanilla CTC (left) and our *CR-CTC* (right) on four randomly selected samples from LibriSpeech test set. The gray dashed lines indicate the blank token. Compared to vanilla CTC, the token distributions in *CR-CTC* are smoother with lower emitting probabilities and more repeating non-blank tokens.

Explanations (3/3)

- Peak suppression
 - Compared to the CTC baseline, CR-CTC learns smoother distributions and significantly improves the recognition performance
 - SR-CTC also surpasses the CTC baseline while exhibiting a notably larger average duration of non-blank tokens.

Table 6: Ablation studies for peak suppression in *CR-CTC* on LibriSpeech dataset using Zipformer-M encoder and greedy search decoding. We include the averaged duration of all non-blank tokens, as well as the averaged emitting probabilities of the blank token and all non-blank tokens on the best alignments.

Method	Non-blank duration	Non-blank duration Emit pro		WER (%)	
	(frames)	blank	non-blank	test-clean	test-other
CTC baseline	1.04	99.64	98.50	2.51	6.02
SR-CTC	4.25	95.44	90.04	2.32	5.22
CR-CTC	1.28	94.19	89.42	2.12	4.62

Compared to using auxiliary head for jointly training

- w/ AED head
- w/ pruned transducer head

Table 7: Comparison between *CR-CTC* and methods using an auxiliary head for jointly training on LibriSpeech dataset using Zipformer-M encoder and greedy search decoding.

Method	Params (M)	WER (%)		
		test-clean	test-other	
CTC baseline	64.3	2.51	6.02	
CTC w/ AED head	90.0	2.46	5.57	
CTC w/ pruned transducer head	65.8	2.42	5.4	
CR-CTC	64.3	2.12	4.62	

• LibriSpeech dataset (1000h), no external language model

Table 1: WER(%) performance of our method on LibriSpeech dataset compared to the best results reported in the literature without using an external language model.

Model	Params (M)	WER (%)		
Woder	Parallis (M)	test-clean	test-other	
CTC/AED, E-Branchformer-B (Kim et al., 2023)	41.1	2.49	5.61	
CTC/AED, Branchformer (Peng et al., 2022)	116.2	2.4	5.5	
CTC/AED, E-Branchformer-L (Kim et al., 2023)	148.9	2.14	4.55	
Transducer, ContextNet-S (Han et al., 2020)	10.8	2.9	7.0	
Transducer, ContextNet-M (Han et al., 2020)	31.4	2.4	5.4	
Transducer, ContextNet-L (Han et al., 2020)	112.7	2.1	4.6	
Transducer, Conformer-S (Gulati et al., 2020)	10.3	2.7	6.3	
Transducer, Conformer-M (Gulati et al., 2020)	30.7	2.3	5.0	
Transducer, Conformer-L (Gulati et al., 2020)	118.8	2.1	4.3	
Transducer, MH-SSM 32L (Fathullah et al., 2023)	140.3	2.01	4.61	
Transducer, Stateformer 25L (Fathullah et al., 2023)	139.8	1.91	4.36	
CTC/AED, Zipformer-S (Yao et al., 2024)	46.3	2.46	6.04	
CTC/AED, Zipformer-M (Yao et al., 2024)	90.0	2.22	4.97	
CTC/AED, Zipformer-L (Yao et al., 2024)	174.3	2.09	4.59	
Pruned transducer, Zipformer-S (Yao et al., 2024)	23.3	2.42	5.73	
Pruned transducer, Zipformer-M (Yao et al., 2024)	65.6	2.21	4.79	
Pruned transducer, Zipformer-L (Yao et al., 2024)	148.4	2.00	4.38	
CTC, Zipformer-S	22.1	2.85	6.89	
CTC, Zipformer-M	64.3	2.52	6.02	
CTC, Zipformer-L	147.0	2.5	5.72	
CR-CTC, Zipformer-S (ours)	22.1	2.52	5.85	
CR-CTC, Zipformer-M (ours)	64.3	2.1	4.61	
CR-CTC, Zipformer-L (ours)	147.0	2.02	4.35	
CR-CTC/AED, Zipformer-L (ours)	174.3	1.96	4.08	
Pruned transducer w/ CR-CTC, Zipformer-L (ours)	148.8	1.88	3.95	

• Aishell-1 dataset (170h), no external language model

Table 2: WER(%) performance of our method on Aishell-1 dataset compared to the best results reported in the literature without using an external language model.

Model	Params (M)	WER (%)	
Wodel	Parallis (WI)	dev	test
CTC/AED, Conformer in ESPnet (Watanabe et al., 2018)	46.2	4.5	4.9
CTC/AED, Conformer in WeNet (Yao et al., 2021)	46.3	_	4.61
CTC/AED, E-Branchformer in ESPnet (Watanabe et al., 2018)	37.9	4.2	4.5
CTC/AED, Branchformer (Peng et al., 2022)	45.4	4.19	4.43
Pruned transducer, Zipformer-S (Yao et al., 2024)	30.2	4.4	4.67
Pruned transducer, Zipformer-M (Yao et al., 2024)	73.4	4.13	4.4
CTC, Zipformer-S	23.1	4.89	5.26
CTC, Zipformer-M	66.2	4.47	4.8
CTC/AED, Zipformer-S	39.3	4.47	4.8
CTC/AED, Zipformer-M	83.2	4.0	4.32
CR-CTC, Zipformer-S (ours)	23.1	3.9	4.12
CR-CTC, Zipformer-M (ours)	66.2	3.72	4.02

GigaSpeech dataset (10000h), no external language model

Table 3: WER(%) performance of our method on GigaSpeech dataset compared to the best results reported in the literature without using an external language model.

Model	Params (M)	WER (%)		
Wiodel	raranis (W)	dev	test	
CTC/AED, Transformer (Chen et al., 2021a)	87	12.30	12.30	
CTC/AED, Conformer in Wenet (Zhang et al., 2022)	113.2	10.7	10.6	
CTC/AED, Conformer in ESPnet (Chen et al., 2021a)	113.2	10.9	10.8	
CTC/AED, E-Branchformer in ESPnet (Watanabe et al., 2018)	148.9	10.6	10.5	
CTC, Zipformer-S	22.1	12.08	11.95	
CTC, Zipformer-M	64.3	11.23	11.27	
CTC, Zipformer-L	147.0	11.16	11.16	
CTC, Zipformer-XL	286.6	10.8	10.87	
CTC/AED, Zipformer-S	46.3	11.4	11.39	
CTC/AED, Zipformer-M	90.0	10.57	10.61	
CTC/AED, Zipformer-L	174.3	10.26	10.38	
CTC/AED, Zipformer-XL	315.5	10.22	10.33	
Pruned transducer, Zipformer-S	23.3	10.98	10.94	
Pruned transducer, Zipformer-M	65.6	10.37	10.42	
Pruned transducer, Zipformer-L	148.4	10.23	10.28	
Pruned transducer, Zipformer-XL	288.2	10.09	10.2	
CR-CTC, Zipformer-S (ours)	22.1	11.68	11.58	
CR-CTC, Zipformer-M (ours)	64.3	10.62	10.72	
CR-CTC, Zipformer-L (ours)	147.0	10.31	10.41	
CR-CTC, Zipformer-XL (ours)	286.6	10.15	10.28	
CR-CTC/AED, Zipformer-XL (ours)	315.5	9.92	10.07	
Pruned transducer w/ CR-CTC, Zipformer-XL (ours)	286.6	9.95	10.03	

Thanks! Q&A

- Paper: https://arxiv.org/pdf/2410.05101
- Code: https://github.com/k2-fsa/icefall/pull/1766