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Motivations and outline
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Motivations

+ The Shannon-Nyquist spatial sampling theorem imposes an unfasible number of measurements, if we wish to adopt
«standard» digital signal processing pipelines.

1.  Soundfield reconstructionina 1mx 1m x Tm cube. Maximum frequency: 1000 Hz @ 343 m/s > A=0.343m > 7/
measuring points along each dimension - >300 sampling points.

2. Given a spherical microphone array of radius r, for a perfect spherical harmonic reconstruction up to a frequency f,

27rfr

allmodes up to Njpax = have to be captured, corresponding to M = (Nmax + 1)? = quadratic increase of
p p P g min q

M min With the maximum frequency and array size.
« Many inverse problems related to spatial audio are ill conditioned. Example: reconstructing the velocity field of a
vibrating surface from the radiated soundfield. A linear operator (KH integral) can be used for this purpose.
Unfortunately, this problem can be tackled only in simplistic cases.

Adopt ML to regularize the problem
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Outline

1.  Soundfield reconstruction over an extended region
« Complex-valued NNs
* Physics-informed NNs

« Diffusion-based NNs
2. Nearfield acoustic holography

« Complex-valued physics-informed NNs

- Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)
3. Upsampling of spherical microphone array measurements



Soundfield reconstruction over an extended region
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Sound field reconstruction over an extended area
Problem formulation

Estimate sound pressure distribution u(r)(r € Q) from M microphone observations {s,,,}}_,

"1 Targetregion O
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Soundfield reconstruction
Contextualization

Goal: reconstruct the soundfield in a region from a sparse set of measurements (i.e. below Nyquist limit).

Target region 0O Representations of the acoustic response of aroom:
- Room Transfer Function (RTF): frequency domain
- Room Impulse Response (RIR): time domain

Ny Resonance modes Early reflections
I I ‘ 1 ‘ ‘
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Al-based spatial audio

Soundfield reconstruction

Contextualization

Training set

Al generation of

room
responses

RTF generation:
CVNN

PINN

Diff NN

(L

/

Dataset augmentation

Auralization /

Sounfield
rendering

6 DoF immersive audio

(1) Repertorium project, funded by EU in the RIA programme, GA number: 101095065 https://repertorium.eu/
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Soundfield reconstruction
Complex-valued Neural Networks

Reconstruction of the RTF over an extended area is typically approached as an image impainting approach, e.g. using

encoder-decoder architectures. But... RTF is complex valued.
Two approaches:

1. Separate inputs for magnitude and phase: excellent reconstruction on the magnitude, bad on the phase
2. Separate inputs for real and imaginary parts: good reconstruction accuracy, but independent reconstructions on the
two components may yield inaccurate phase if some countermeasures are not adopted in the loss function.

Solution: complex valued neural network
Conditioning of the learning on the points where measurements are available

Giuput (CWX Hx K
CVV xHx2K

C=>*

Complex Conv + CPReLU + Stride (2 x 2) +
Kernel (3 x 3)

Complex Conv + CPReLU + Upsample (2 x 2) +
Kernel (3 x 3)

. Complex Conv + Stride (1 x 1) + Kernel (1 x 1)

\ Complex batch normalization

—» Concatenation Legena

)

Setup:

Eval: 15000 simulated rooms,
Training: 5000 simulated rooms.
0.45<Tgp<1.6S

Room B of ISOBEL for real data
evaluation

[5,10,15,35,55] measurement
points out of ~1000 virtual mic
positions

F. Ronchini, L. Comanducci, M. Pezzoli, F. Antonacci, A. Sarti,. Room Transfer Function Reconstruction Using Complex-valued Neural Networks and Irregularly

Distributed Microphones, EUSIPCO 2024
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Soundfield reconstruction
Complex-valued Neural Networks

Ground truth a
' Magnitude
B 15 meas. points
’ 1024 reconstr. points
0 1 Q:I:hnl 3 4
&
o§6’° =
S Phase
9
&

lm xfm] 2 3
2[m] x[m]

F. Ronchini, L. Comanducci, M. Pezzoli, F. Antonacci, A. Sarti,. Room Transfer Function Reconstruction Using Complex-valued Neural Networks and Irregularly Distributed
Microphones, EUSIPCO 2024

Lluis, F., Martinez-Nuevo, P., BoMgller, M., & Ewan Shepstone, S. (2020). Sound field reconstruction in rooms: Inpainting meets super-resolution. The Journal of the Acoustical
Society of America, 148(2), 649-659.

N. Ueno, S. Koyama, and H. Saruwatari, “Kernel ridge regression with constraint of Helmholtz equation for sound field interpolation,” inInt. Workshop Acoust. Signal Enhanc.
|EEE, 2018
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Sound field reconstruction
Physics constraints

argetregion Q

General interpolation technique:
Represent u using model parameters 6

Regularization R(0)

Solve optimization problem

argmin L({u(r,; 0)}_,,s) + R(0)
0

Prior knowledge: acoustics!
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Sound field reconstruction
Physics constraints

Target function should satisfy

62
Wave equation (time domain) (Vﬁ — lm) U(r,t) =0

c2

Helmholtz equation (frequency domain) (V2 + k?)u(r,w) = 0 ) ,_r—;—r

Sm

1 Targetregion Q
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Sound field reconstruction:
Common basis

Solutions of wave equation:

P ! 0.4 047
02 05 A02 22 =
£ o E, 5
"-02 -05 "'-02 o 20
« Plane waves u(r,w) = fSZ fi(n, w) ek dy 04 i 4,,} s

v (m)
o
©

-oa-ozaozaa -ozo)oz —oa-ozoozu
x (m x{m)
n= uooo 0.0 n=107, 0.7, 0.0f7 B n= |ootooo)* 1=-07,07, 0.0
al
04 1 "
02 0.05 oz
. . . r—ro 02 "0 .oos‘-oz -0.05 * 02 -0.05
« Spherical waves u(r, ) = Xy Xty () jy (kllr — rOII)Y( ”) = ¥
-04-0200204 -04412(0)0204 4)4-02(0)0204 -04-0200204
xim Xim
(»a) (o 0) (v = (1, 1) (vgd) = (1, 1) l'v.m (u)

Picture from: Koyama S, Ribeiro J., Nakamura T., Ueno N., Pezzoli
k(r—1") M. "Physics-informed Machine Leraning for Sound Field
e

Estimation"|IEEE Signal Processing Magazine, vol. 41, no. 6, pp. 60-

 Equivalent sources u(r,w) = u(r’, w r
9 ( ) faﬂ ( )4nllr—rrll 71, Nov. 2024
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Physics-informed neural networks (PINNs)

Introduced in [1] into solve PDE

We
Ca
N
Yo/, "
/> PDE Loss fh@

Fi ou "o
L(w) ={adx  dy Q(/Gz‘/
Ony

[1] Raissi, Maziar, et al. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations." Journal of Computational physics (2019).



POLITECNICO DI MILANO Al-based spatial audio

Sound field reconstruction:
PINN

Use NN with physics-informed training

0" = argmin L(f (6, {Tm}m 1),8) +

\CNN

parameters

Regularization by
 Model structure
« PDE Loss

X)
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Sound field reconstruction:
PINN - Pl Loss function

« Use physics-informed training

6" = argmin L(f(, {rn}ih-1), ) +

\GNN N\

parameters NN

« Pl-Loss function
Estimate by NN

1< R
L= i =l + A )
m n=1

V2, —

M)

1 01,
c2 Ot?

2

2
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Sound field reconstruction:
PINN - Reconstruction of speech signals

« Reconstructionresults onreal arbitrary sound fields of speech signals
« Comparison with GAN|x]

- - B \[
Mgy Mspg Msg Z i :
[=H
— 0 ' T
2 IIII Ill I m :
=
3 —10 : : i)
l
o
=
< 3 ] ]
q PN LA
— ] _—_—
: | : i
= -0 - - b}
i
L]
=
. |
O2040608 1 D20k DB OE | 2 0 s ks . Intensity (W/m?) _
Frequency [kHz]  Frequency [kHz]  Freguency [kHz] 55 110 164 219

%1071

[1] X. Karakonstantis, E. Fernandez-Grande, Generative adversarial networks with physical sound field priors. J. Acoust. Soc. Am. 154(2), 1226-1238 (2023)
[2] M. Olivieri, X. Karakonstantis, M. Pezzoli, F. Antonacci, A. Sarti, and E. Fernandez-Grande, “Physics-informed neural network for volumetric sound field
reconstruction of speech signals,” EURASIP J. Audio, Speech, Music Processing, vol. 2024, 2024, Art. no. 42.
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Diffusion models

Basic idea: add noise to input data, and then use a NN (e.g. the U-Net) to separate the images
from the noise (i.e., denoising).

Could we then feed the model noise and create a relevant data?

Original Noise Added Predicted Original

0
5
10
15
0 10
B
i
10 E. ] °

NVIDIA Generative Al with Diffusion Models workshop - Prof. Dr. Andras Hajdu

0

5
10

15

0 10




POLITECNICO DI MILANO Al-based spatial audio

Diffusion models - Forward process

Solution: rather than adding noise to the data all at once, add a small amount of noise multiple
times (forward process). Then use the neural network on a noisy image multiple times to
generate new data (reverse process).

Q(X1|Xo) (I(Xz|¥1) ‘I(X3|’f2)

e " M,
W R I

Given a data point sampled from a real data distribution, in the forward diffusion process we add small amount of Gaussian noise to the
sample in steps (Markov chain), producing a sequence of noisy samples. The step sizes are controlled by a variance schedule.

NVIDIA Generative Al with Diffusion Models workshop - Prof. Dr. Andras Hajdu
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Diffusion models - Reverse process

Solution: rather than adding noise to the data all at once, add a small amount of noise multiple
times (forward process). Then use the neural network on a noisy image multiple times to
generate new data (reverse process).

tO t=3 t=4 ey " 8 t=9 t 10
p(xolxy) /\p(xllx2) /\p(XzIx3) Ap(Xsto /\p(x4lx5) /\p(XSIXG) Ap(XaIXy) /\p(x7Ix8) Ap(XaIXg) Ap(XgIXm)/

Now, we want to try toreverse the g distribution in order to remove noise, using distribution p. Since it is challenging to know the exact
model, we define p as a Markov chain with learned Gaussian transitions starting at p(x;) = N(x;; 0, I).

NVIDIA Generative Al with Diffusion Models workshop - Prof. Dr. Andras Hajdu
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Sound field reconstruction:
Diffusion models - Pipeline

*Model: Palette - diffusion denoising probabilistic model, designed for image-to-image translation tasks
*Architecture: U-Net - convolutional autoencoder initially designed for medical images processing
‘Input: concatenation of sound field at measurement positions and frequency embedding, encoding a
considered frequency (used for conditioning) - Noise injected at the unknown positions

*Output: reconstructed sound field

*Loss: Mean Squared Error

Frequency embedding

input
image
tile

output
> '_’\ segmentation

| ¢ map

(X >

] D*D*D =» conv 3x3, ReLU
SR

¥
¥

L d

- copy and crop
3 DDD § max pool 2x2

T 4 up-conv 2x2
= conv 1x1

Miotello, Federico, et al. "Reconstruction of sound field through diffusion models.” ICASSP 2024-2024 |EEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2024.
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Sound field reconstruction:
Diffusion models - Setup

*Training carried out each frequency at a time (considered frequency range 30-300Hz) for 10k epochs
-Simulated training data set: frequency response (30-300Hz) of 10000 rooms

-Simulated testing data set: Frequency response (30-300Hz) of 250 rooms

*Room dimensions are random, with floor area 20-60m2

*T60 fixed to 0.6s

‘Number of available microphones: 64 - 128 - 256 - 512

Frequency embedding
input
mat?lg > it el g:l;?:lé tat
EE R
V \J 128 128 . l
: ”, il
: 4 "
Jor Rk I ot
] . | | o % H‘H*D : D"‘D"D = conv 3x3, ReLU
I L u - i' ______ T - S copy and crop
]| -l D,Dﬂ g DDD ¥ max pool 2x2
= I ) 1001 ' ] # up-conv 2x2
I u I :I”:"N:I = conv 1x1

Miotello, Federico, et al. "Reconstruction of sound field through diffusion models.” ICASSP 2024-2024 |EEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2024.
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Sound field reconstruction:
Diffusion models - Results

64 available mics 128 available mics 256 available mics 512 available mics
g ; 8
g 6 Pros:
o T4 =
g = = « Goodresults
S 2 ]
QO

« Generalization capabilities
- Easytotrain (no complicated
loss)

]
=

z[m] x[m]

ylm|

Cons:

« Limited to magnitude
reconstruction

» Not using acoustic priors

Reconstructed
sound field

" L. AT

6 - 6 - [ ] a . .
iz : T - Training needs a lot of data

4L w g m T L - B E i

< I P a2 5 : « One frequency at atime
:Ca? 2 o " . u 7.-l. I.I. - -II.I 2
<I'E B - A e |

’ ;vbfﬂ ’ ,1'[7:1} ’ i[”ﬂ l

98 Hz 104 Hz 280 Hz

Miotello, Federico, et al. "Reconstruction of sound field through diffusion models." ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024.
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Inverse Nearfield Acoustic Holography
Problem statement

Goal: reconstruct the velocity v(x’, ") on the vibrating surface starting from the pressure field p(x, y)
measured on the holographic plane

_ Direct NAH: Kirchhoff-Helmholtz integral
Holographic plane H

d

p(x,y,w) = f p(x',y") a—ngw(x, y,z,x',y',z")ds

S

jopo J; vn(x',y") gu(x,¥,2,x",y',2")ds

Inverse NAH:

Dp(x’,y") = T Y[p(x,y)] discrete estimator: NN

Vibrating surface §
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Inverse Nearfield Acoustic Holography
Limits

Presence of evanescent components Nyquist sampling limit requires many mics

Highly ill-posed estimation problem Unfeasible if we aim at v above a few tens of Hz

Need of regularization Need of superresolution algorithms

Limited number of mics on ', high resolutionon §
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Inverse Nearfield Acoustic Holography
Complex-valued Physics-Informed Neural Network for NAH

Problem: not possible to include the inverse problem physics directly into the network.

Idea: exploit the knowledge of the forward solution (KH equation) as an external element into the loss function

d
p(x,y, w) =j p(x’,y’)%gw(x,y,z,x’,y’,Z’)ds—jwpo] (X", v go(x,y,2,x",y',z")ds
SJ SJ

Pressure fieldon § Velocity fieldon § Ps, Py, P,V are complex

-~

P | Inverse S - &
H propagation g Pg-[

propagation

|

Use of CVNN

Deep Neural Network Mathematical model

+ OlivieriM, Pezzoli M, AntonacciF, Sarti A. A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography. Sensors. 2021; 21(23):7834
» M. Olivieri, M. Pezzoli, F. Antonacci and A. Sarti, "Near field Acoustic Holography on arbitrary shapes using Convolutional Neural Network,” 202129th European Signal Processing
Conference (EUSIPCO)

» X.Luan, M. Qlivieri, M. Pezzoli, F. Antonacciand A. Sarti, “Complex - Valued Physics-Informed Neural Network for Near-Field Acoustic Holography,” 2024 32nd European Signal Processing
Conference (EUSIPCO)
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Inverse Nearfield Acoustic Holography

Al-based spatial audio

Complex-valued Physics-Informed Neural Network for NAH

lasxs M- =

C-MaxPool

16@axd .

Possible activation functions:

28

modReL.U f(z) = ReLU(|z| + b)e®®=
) Skip connec:ion % Z J ZRelL.U f(z) _ z if 6, E [O, 71'/2]
2 = £ ) 5o k 0 otherwise
z T Ezz A v ° CReLU  f(z) = ReLU(R(2)) + iReLU(S(2))
SIS 1
. - Y R Cardioid f(z) = 52(1 + cos(8z))
< > PR = A-Cardioid f(z) = %z(l + cos(0; + 6y))
IR Ll -
g o S A 2 N_N -N . * z = |z|e*= and b is the trainable bias.
(?\i % 5 ‘rx Vl'x a oo o0 -
=13 8§ 2 ¢ iz & g7 T
@ - = a = =< | %Q & é . H H 1
= ¥ $Selection of the activation function:
C-Conv C-Conv: Complex convolution ¥
C-AF C-(é(_)r(lj\;i;&ns C-AF: Complgx activation function v
C: C-Conv C-AF C-BN: Complex batch normalisa}tion NMSE NCC NMSE NCC
C-AF C-BN C-MaxPool: Complex max pooling
C-BN C-ConvTrans: Complex transposed convoh RV-KHCNN -17.46 99.23% 2372 99 .83%
modReLU -13.55  98.28% -24.27 99.87%
CReLU -17.92  99.32% -23.46 99.83%
Cardioid -18.99 9948% -26.30 99.91%
A-Cardioid -18.89  9947% -25.99 99.90%
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Inverse Nearfield Acoustic Holography

Al-based spatial audio

29

Complex-valued Physics-Informed Neural Network for NAH

e(]-]) Z-

e(£)

Reconstruction example

(a) Ground truth

(b) RV-KHCNN
Py

0] OO0 ) O i
Lo L
g =
o

(c) CV-KHCNN

ﬂ .
0 002
UO 001
0.000

DO .02

e(|-]) Z-

e(£-)

0.015
0.010
0.005
0.000

)0 -
:
ﬂ
:

H
3 Th
L

(a) Ground truth (b) RV-KHCNN  (c) CV-KHCNN
\%
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Inverse Nearfield Acoustic Holography
Complex-valued Physics-Informed Neural Network for NAH

1-SNE visualization of the bottleneck

15 21 —g%

14 20 29

e e (a): t-SNE of different boundary

n s conditions. Red: free, blue: clamped,

10 14 21 ]

: 3 B> f green: simply sgpported

' E I is 0 (b): t-SNE for different boundary
— 1) 13 .

Sl ChA conditions and mode numbers

4 6 8

3 a :

2 3 3

, 2

(a) (b)

« H.Kafri, M. Olivieri, F. Antonacci, M. Moradi, A. Sarti and S. Gannot, "Grad-CAM-Inspired Interpretation of Nearfield Acoustic Holography using Physics-Informed
Explainable Neural Network," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

« X.Luan, M. QOlivieri, M. Pezzoli, F. Antonacci and A. Sarti, "Complex - Valued Physics-Informed Neural Network for Near-Field Acoustic Holography,” 2024 32nd
European Signal Processing Conference (EUSIPCO)

30



POLITECNICO DI MILANO Al-based spatial audio 31

Inverse Nearfield Acoustic Holography
Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)

Inverse Equivalent Source method: model the £
pressure on the hologram plane as the propagation s
of equivalent sources from the plane ¢ to the A
hologram plane H'. The velocity field is obtained by
propagating the sources on ¢ to the source plane
S(V). DE—

\ 4
™

PINN-SFD: introduce virtual planes (VPs) V;...y,

between ¢ and H. The sound field is propagated ol I p y
from ¢ to the nearest VP and then between VPs up to : E; ff E; ff fff ff ( fff ng e
H . Pro: additional regularization constraints are A S | ' '
mposed, g
A one-shot self supervised learning strategy is : B
adopted - no need of training datasets. 2> z Az *H

Xinmeng Luan, Mirco Pezzoli Fabio Antonacci, Augusto Sarti, Physics-Informed Neural Network-Driven Sparse Field Discretization Method for Near-Field Acoustic
Holography, accepted for publication at IEEE/ACM Transactions on Audio, Speech and Language Processing
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Inverse Nearfield Acoustic Holography
Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)

32

. Skip Connection 2
S S = = £ Physics constraints
3 & A %
= 3 [EEE & i WAL
I & i 2 O O i ! X &> W RS -
OO O D |5 T00 G O O L% RO IF
— <
I..-‘-—_‘-.. gL
oo ¥ T > E E ° o S T T < ~F ! — —@2 ~ ~®2 . ™
x5 & S ® ® S & 9 F FFEES L ° Wl &
99 @ ¢ g 9 3 S S 5@@@@@@3“@2) éL B & ®
Rl ($2) — N — 0 s @ —
L -~ —10: S
| @ : ) :
Deep Neural Network w X E
<P EJ
C:C C-Conv: Compl luti
C-AF S C-AF: Complex activation function
C: C-Conv S C- X%V C-BN: Complex batch normalisation
C-AF C-BN C-MaxPool: Complex max pooling )
C-BN C-ConvTrans: Complex transposed convolution
P L .
) N. |lpx — P%llz propagation from e to H penalty term
_ £ E - ‘l_.:'-t_ o
£ =+ (Ipw = Bulls + 3 o3 — Y1) + Al e |
i P — P4/ |la propagation from V; to H penalty term

Xinmeng Luan, Mirco Pezzoli Fabio Antonacci, Augusto Sarti, Physics-Informed Neural Network-Driven Sparse Field Discretization Method for Near-Field Acoustic
Holography, accepted for publication at IEEE/ACM Transactions on Audio, Speech and Language Processing
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Inverse Nearfield Acoustic Holography
Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)

&D| &D| &b ED| |
G (e G G G|

(@) Ny =0 (b) N, =1 (€) Ny =2 (d) N, =3 () N, =5 N, =7
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le— le le 1 1
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Upsampling of spatial audio data
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Upsampling spherical microphone array measurements
Problem statement

Goal: increase the spatial resolution of spherical microphone arrays (SMAs) for increasing the order of
spherical harmonic decomposition,

Needs:

« Mitigate the requirement of large datasets for
training the network

* Includeinto the network some knowledge
about the physics of the problem (e.g. rigid

l sphere)

Physics Informed Neural Network

+ T.Libeck, J.M. Arend, and C. Pérschmann, “Spatial upsampling of sparse spherical microphone array signals,”, IEEE Trans. Audio Speech Lang. Process., vol. 31, pp.
1163-1174, 2023

* F.Miotello, F. Terminiello, M. Pezzoli, A. Bernardini, F. Antonacci and A. Sarti, "A Physics-Informed Neural Network-Based Approach for the Spatial Upsampling of
Spherical Microphone Arrays,” IWAENC 2024, pp. 215-219
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Upsampling spherical microphone array measurements
Model

A; = 0;(x{6; + b))
w

0;(z) = sin(wyz) + Z nysin(a,, z)

w=1

SIREN R /

e
ny, 1
Ay w
SIREN 3 # layers L=4

S
Z |{p(rq,k) p(rq,k)||2+ %ZI\I[Vzﬁén(rs,k)+iVZﬁcs(rs,k)]+k2ﬁ(rs,k)||§i
rq€Q =1

Y

Data fidelity term Physics-based term (Helmholtz equation)
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Upsampling spherical microphone array measurements
PINN results

Upsampling of real measurements of a spherical microphone arrays
- Comparison with SARITA [1] - Signal processing method

© ‘h—(lmuml truth SARITA o H—(;rmm(l truth Proposed
::'_': 0.1 é 0.1
g 0 g 0
- -
Mean NMSE conecerning the number of available channels in the SMA for EM32D dataset 0.1 - y 0.1 y &
0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2
Mean NMSE Time [s] 102 Time [s] 1072
Q 4 7 9 ] 16 [ 25 S (a) (b)
SARITA -0.65 | -2.6 -1.9 -5.487 X
SIREN LT | -2.60 | -5.76 | -10.92 ‘ '/“
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Considerations

Strict requirements if generated data are used for the development and training of space-time processing algorithms:

« Phaserelationships (if we work with RTFs);

« Time delays (if we work with RIRS).

These constraints can be fulfilled through:

« Conditioning of the input (CVNN or diffusion models);
« Dedicated network architectures (PINNSs).

Network complexity

PINNS Diffusion models

Difficulty in incorporating physics-based conditioning

)

Difficulty in incorporating physics-based laws
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