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Motivations
• The Shannon-Nyquist spatial sampling theorem imposes an unfasible number of measurements, if we wish to adopt

«standard» digital signal processing pipelines.

1. Soundfield reconstruction in a 1m x 1m x 1m cube. Maximum frequency: 1000 Hz @ 343 m/s→ λ=0.343 m → 7 
measuring points along each dimension→ >300 sampling points.

2. Given a spherical microphone array of radius r, for a perfect spherical harmonic reconstruction up to a frequency f, 

all modes up to 𝑁max =
2𝜋𝑓𝑟

𝑐
have to be captured, corresponding to 𝑀min = (𝑁max + 1)2

→ quadratic increase of 

𝑀min with the maximum frequency and array size. 
• Many inverse problems related to spatial audio are ill conditioned. Example: reconstructing the velocity field of a 

vibrating surface from the radiated soundfield. A linear operator (KH integral) can be used for this purpose. 
Unfortunately, this problem can be tackled only in simplistic cases. 
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Adopt ML to regularize the problem



Outline

1. Soundfield reconstruction over an extended region

• Complex-valued NNs

• Physics-informed NNs

• Diffusion-based NNs
2. Nearfield acoustic holography

• Complex-valued physics-informed NNs

• Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)
3. Upsampling of spherical microphone array measurements
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Soundfield reconstruction over an extended region
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Sound field reconstruction over an extended area
Problem formulation

Estimate sound pressure distribution 𝑢 𝒓 𝒓 ∈ Ω from 𝑀 microphone observations 𝑠𝑚 𝑚=1
𝑀
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𝑟

Target region Ω

𝑠𝑚



Soundfield reconstruction
Contextualization

Representations of the acoustic response of a room:
• Room Transfer Function (RTF): frequency domain
• Room Impulse Response (RIR): time domain
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Goal: reconstruct the soundfield in a region from a sparse set of measurements (i.e. below Nyquist limit). 
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Soundfield reconstruction
Contextualization
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(1) Repertorium  project, funded by EU in the RIA programme, GA number: 101095065  https://repertorium.eu/

AI generation of 
room 

responses
Training set

RTF generation: 
CVNN
PINN
Diff NN

Auralization / 
Sounfield 
rendering

6 DoF immersive audio (1)

Dataset augmentation



Soundfield reconstruction
Complex-valued Neural Networks

Reconstruction of the RTF over an extended area is typically approached as an image impainting approach, e.g. using 
encoder-decoder architectures. But… RTF is complex valued. 
Two approaches: 
1. Separate inputs for magnitude and phase: excellent reconstruction on the magnitude, bad on the phase
2. Separate inputs for real and imaginary parts: good reconstruction accuracy, but independent reconstructions on the 

two components may yield inaccurate phase if some countermeasures are not adopted in the loss function.

Solution: complex valued neural network
Conditioning of the learning on the points where measurements are available
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F. Ronchini, L. Comanducci, M. Pezzoli, F. Antonacci, A. Sarti,. Room Transfer Function Reconstruction Using Complex-valued Neural Networks and Irregularly 
Distributed Microphones, EUSIPCO 2024

Setup:
• Eval: 15000 simulated rooms, 
• Training: 5000 simulated rooms.
• 0.4s<T60<1.6s 
• Room B of ISOBEL for real data 

evaluation
• [5,10,15,35,55] measurement 

points out of ~1000 virtual mic 
positions



Soundfield reconstruction
Complex-valued Neural Networks
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a) F. Ronchini, L. Comanducci, M. Pezzoli, F. Antonacci, A. Sarti,. Room Transfer Function Reconstruction Using Complex-valued Neural Networks and Irregularly Distributed 
Microphones, EUSIPCO 2024

b) Lluis, F., Martinez-Nuevo, P., Bo Møller, M., & Ewan Shepstone, S. (2020). Sound field reconstruction in rooms: Inpainting meets super-resolution. The Journal of the Acoustical 
Society of America, 148(2), 649-659.

c) N. Ueno, S. Koyama, and H. Saruwatari, “Kernel ridge regression with constraint of Helmholtz equation for sound field interpolation,” in Int. Workshop Acoust. Signal Enhanc. 
IEEE, 2018

Ground truth a b c

Magnitude
15 meas. points
1024 reconstr. points

Phase



Sound field reconstruction
Physics constraints

General interpolation technique:

• Represent 𝑢 using model parameters 𝜽

• Regularization ℛ 𝜽  

• Solve optimization problem

argmin
𝜽

ℒ( 𝑢 𝒓𝑚; 𝜽 }𝑚=1
𝑀 , 𝒔 +  ℛ 𝜽
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𝑟

Target region Ω

𝑠𝑚

Prior knowledge: acoustics!



Sound field reconstruction
Physics constraints

Target function should satisfy

• Wave equation (time domain)      ∇𝒓
2 −

1

c2

𝜕2

𝜕𝑡2 𝑈 𝒓, 𝑡 = 0

• Helmholtz equation (frequency domain)         ∇𝒓
2 + 𝑘2 𝑢 𝒓, 𝜔 = 0
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𝑟

Target region Ω

𝑠𝑚



Sound field reconstruction:
Common basis

Solutions of wave equation: 

• Plane waves                   𝑢 𝒓, 𝜔 = 𝕊2׬  ෤𝑢 𝜼, 𝜔 𝑒𝜄𝑘 𝜼,𝒓 𝑑𝜼

• Spherical waves           𝑢 𝒓, 𝜔 = σ𝜈 σ𝜇 ሶ𝑢𝜈,𝜇 𝜔 𝑗𝜈 𝑘 𝒓 − 𝒓𝑜 𝑌
𝒓−𝒓𝑜

𝒓−𝒓𝑜

• Equivalent sources     𝑢 𝒓, 𝜔 = Ω��׬ 
𝑢ු 𝒓′, 𝜔

𝑒𝜄𝑘(𝒓−𝒓′)

4𝜋 𝒓−𝒓′
𝑑𝒓′
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Picture from: Koyama S, Ribeiro J., Nakamura T., Ueno N., Pezzoli 

M. ’’Physics-informed Machine Leraning for Sound Field 

Estimation"IEEE Signal Processing Magazine, vol. 41, no. 6, pp. 60-

71, Nov. 2024



Physics-informed neural networks (PINNs)

Introduced in [1]  in to solve PDE
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[1] Raissi, Maziar, et al. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving 
nonlinear partial differential equations." Journal of Computational physics (2019).
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Sound field reconstruction:
PINN

Use NN with physics-informed training

𝜽∗ = arg min
𝜽

ℒ 𝑓(𝜽, 𝑟𝑚}𝑚=1
𝑀 , 𝒔 + ℛ 𝜽

Regularization by 
• Model structure
• PDE Loss
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NN 
parameters NN 

X



Sound field reconstruction:
PINN –PI Loss function

• Use physics-informed training 

𝜽∗ = arg min
𝜽

ℒ 𝑓(𝜽, 𝑟𝑚}𝑚=1
𝑀 , 𝒔 + ℛ 𝜽

• PI-Loss function

ℒ =
1

𝑀
෍

𝑚

ො𝑢𝑚 − 𝑢𝑚 2
2 + 𝜆

1

𝑁
෍

𝑛=1

𝑁

∇2 ො𝑢𝑛 −
1

𝑐2

𝜕2 ො𝑢𝑛

𝜕𝑡2
2

2
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NN 
parameters NN 

X
Estimate by NN



Sound field reconstruction:
PINN –Reconstruction of speech signals

• Reconstruction results on real arbitrary sound fields of speech signals
• Comparison with GAN[x]
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[1] X. Karakonstantis, E. Fernandez-Grande, Generative adversarial networks with physical sound field priors. J. Acoust. Soc. Am. 154(2), 1226–1238 (2023)

[2] M. Olivieri, X. Karakonstantis, M. Pezzoli, F. Antonacci, A. Sarti, and E. Fernandez-Grande, “Physics-informed neural network for volumetric sound field 

reconstruction of speech signals,” EURASIP J. Audio, Speech, Music Processing, vol. 2024, 2024, Art. no. 42.



Diffusion models
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NVIDIA Generative AI with Diffusion Models workshop - Prof. Dr. Andras Hajdu

Basic idea: add noise to input data, and then use a NN (e.g. the U-Net) to separate the images 
from the noise (i.e., denoising).

Could we then feed the model noise and create a relevant data?



Diffusion models – Forward process
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NVIDIA Generative AI with Diffusion Models workshop - Prof. Dr. Andras Hajdu

Solution: rather than adding noise to the data all at once, add a small amount of noise multiple 
times (forward process). Then use the neural network on a noisy image multiple times to 
generate new data (reverse process).

Given a data point sampled from a real data distribution, in the forward diffusion process we add small amount of Gaussian noise to the 
sample in  steps (Markov chain), producing a sequence of noisy samples. The step sizes are controlled by a variance schedule.



Diffusion models – Reverse process
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NVIDIA Generative AI with Diffusion Models workshop - Prof. Dr. Andras Hajdu

Solution: rather than adding noise to the data all at once, add a small amount of noise multiple 
times (forward process). Then use the neural network on a noisy image multiple times to 
generate new data (reverse process).

Now, we want to try to reverse the q distribution in order to remove noise, using distribution p. Since it is challenging to know the exact 
model, we define p as a Markov chain with learned Gaussian transitions starting at p(xT) = N(xT; 0, I).



Sound field reconstruction:
Diffusion models - Pipeline
•Model: Palette – diffusion denoising probabilistic model, designed for image-to-image translation tasks
•Architecture: U-Net – convolutional autoencoder initially designed for medical images processing
•Input: concatenation of sound field at measurement positions and frequency embedding, encoding a 
considered frequency (used for conditioning) - Noise injected at the unknown positions
•Output: reconstructed sound field
•Loss: Mean Squared Error
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Miotello, Federico, et al. "Reconstruction of sound field through diffusion models." ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE, 2024.



Sound field reconstruction:
Diffusion models - Setup
•Training carried out each frequency at a time (considered frequency range 30-300Hz) for 10k epochs
•Simulated training data set: frequency response (30-300Hz) of 10000 rooms
•Simulated testing data set: Frequency response (30-300Hz) of 250 rooms
•Room dimensions are random, with floor area 20-60m2
•T60 fixed to 0.6s
•Number of available microphones: 64 - 128 - 256 - 512
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Miotello, Federico, et al. "Reconstruction of sound field through diffusion models." ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE, 2024.



Sound field reconstruction:
Diffusion models - Results

P OL IT ECN IC O DI MI LA N O A I-ba s ed s pa tia l a udio 23

Miotello, Federico, et al. "Reconstruction of sound field through diffusion models." ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024.

Pros:
• Good results
• Generalization capabilities
• Easy to train (no complicated 

loss)

Cons:
• Limited to magnitude 

reconstruction
• Not using acoustic priors
• Training needs a lot of data
• One frequency at a time



Nearfield Acoustic Holography
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Inverse Nearfield Acoustic Holography
Problem statement
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Goal: reconstruct the velocity 𝑣 𝑥′, 𝑦′  on the vibrating surface starting from the pressure field 𝑝 𝑥, 𝑦   
measured on the holographic plane

Direct NAH: Kirchhoff-Helmholtz integral

Inverse NAH:

                                                     discrete estimator: NN 

𝑝 𝑥, 𝑦, 𝜔 = න
𝒮

𝑝 𝑥′, 𝑦′
𝜕

𝜕𝒏
𝑔𝜔 𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′ 𝑑𝒔

-𝑗𝜔𝜌0 𝒮׬
𝑣𝒏(𝑥′, 𝑦′) 𝑔𝜔 𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′ 𝑑𝒔

Vibrating surface 𝒮

Holographic plane ℋ

ො𝑣𝒏(𝑥′, 𝑦′) ≈ Γ−1[𝑝 𝑥, 𝑦 ]



Inverse Nearfield Acoustic Holography
Limits 
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Presence of evanescent components

Highly ill-posed estimation problem

Need of regularization

Nyquist sampling limit requires many mics 

Unfeasible if we aim at 𝑣 above a few tens of Hz

Need of superresolution algorithms

Limited number of mics on ℋ, high resolution on 𝒮



Inverse Nearfield Acoustic Holography
Complex-valued Physics-Informed Neural Network for NAH

Problem: not possible to include the inverse problem physics directly into the network.

Idea: exploit the knowledge of the forward solution (KH equation) as an external element into the loss function

𝑝 𝑥, 𝑦, 𝜔 = න
𝒮

𝑝 𝑥′, 𝑦′
𝜕

𝜕𝒏
𝑔𝜔 𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′ 𝑑𝒔−𝑗𝜔𝜌0 න

𝒮

𝑣𝒏(𝑥′, 𝑦′) 𝑔𝜔 𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′ 𝑑𝒔  
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• Olivieri M, Pezzoli M, Antonacci F, Sarti A. A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography. Sensors. 2021; 21(23):7834
• M. Olivieri, M. Pezzoli, F. Antonacci and A. Sarti, "Near field Acoustic Holography on arbitrary shapes using Convolutional Neural Network," 2021 29th European Signal Processing 

Conference (EUSIPCO)
• X. Luan, M. Olivieri, M. Pezzoli, F. Antonacci and A. Sarti, "Complex - Valued Physics-Informed Neural Network for Near-Field Acoustic Holography," 2024 32nd European Signal Processing 

Conference (EUSIPCO)

Pressure field on 𝒮 Velocity field on 𝒮 ෠P𝒮 ,Pℋ , ෠Pℋ
෡V are complex 

Use of CVNN



Inverse Nearfield Acoustic Holography
Complex-valued Physics-Informed Neural Network for NAH
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Possible activation functions:

Selection of the activation function:



Inverse Nearfield Acoustic Holography
Complex-valued Physics-Informed Neural Network for NAH
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Reconstruction example



Inverse Nearfield Acoustic Holography
Complex-valued Physics-Informed Neural Network for NAH

t-SNE visualization of the bottleneck
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• H. Kafri, M. Olivieri, F. Antonacci, M. Moradi, A. Sarti and S. Gannot, "Grad-CAM-Inspired Interpretation of Nearfield Acoustic Holography using Physics-Informed 
Explainable Neural Network," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

• X. Luan, M. Olivieri, M. Pezzoli, F. Antonacci and A. Sarti, "Complex - Valued Physics-Informed Neural Network for Near-Field Acoustic Holography," 2024 32nd 
European Signal Processing Conference (EUSIPCO)

(a): t-SNE of different boundary 
conditions. Red: free, blue: clamped, 
green: simply supported
(b): t-SNE for different boundary 
conditions and mode numbers



Inverse Nearfield Acoustic Holography
Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)

Inverse Equivalent Source method: model the 
pressure on the hologram plane as the propagation 
of equivalent sources from the plane 𝜀 to the 
hologram plane ℋ. The velocity field is obtained by 
propagating the sources on 𝜀 to the source plane 
𝒮 𝒱1 .

PINN-SFD: introduce virtual planes (VPs)  𝒱1⋯𝑁𝑣
 

between 𝜀  and ℋ. The sound field is propagated 
from 𝜀  to the nearest VP and then between VPs up to 
ℋ. Pro: additional regularization constraints are 
imposed. 
A one-shot self supervised learning strategy is 
adopted → no need of training datasets. 
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Xinmeng Luan, Mirco Pezzoli Fabio Antonacci, Augusto Sarti, Physics-Informed Neural Network-Driven Sparse Field Discretization Method for Near-Field Acoustic 
Holography, accepted for publication at IEEE/ACM Transactions on Audio, Speech and Language Processing



Inverse Nearfield Acoustic Holography
Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)
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propagation from 𝜀 to ℋ penalty term

propagation from 𝒱𝑖 to ℋ penalty term

Xinmeng Luan, Mirco Pezzoli Fabio Antonacci, Augusto Sarti, Physics-Informed Neural Network-Driven Sparse Field Discretization Method for Near-Field Acoustic 
Holography, accepted for publication at IEEE/ACM Transactions on Audio, Speech and Language Processing



Inverse Nearfield Acoustic Holography
Physics-Informed Neural Network-driven Sparse Field Discretization method (PINN-SFD)

Mode 19, f = 800.3 Hz

Mode 21, f = 863,7 Hz
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Upsampling of spatial audio data
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Upsampling spherical microphone array measurements
Problem statement

Goal: increase the spatial resolution of spherical microphone arrays (SMAs) for increasing the order of 
spherical harmonic decomposition, 
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• T. Lübeck, J. M. Arend, and C. Pörschmann, “Spatial upsampling of sparse spherical microphone array signals,” , IEEE Trans. Audio  Speech Lang. Process., vol. 31, pp. 
1163–1174, 2023

• F. Miotello, F. Terminiello, M. Pezzoli, A. Bernardini, F. Antonacci and A. Sarti, "A Physics-Informed Neural Network-Based Approach for the Spatial Upsampling of 
Spherical Microphone Arrays," IWAENC 2024, pp. 215-219

Needs:
• Mitigate the requirement of large datasets for 

training the network
• Include into the network some knowledge 

about the physics of the problem (e.g. rigid 
sphere)

Physics Informed Neural Network



Upsampling spherical microphone array measurements
Model

Parameter Value

Activation 
function Rowdy

𝑛𝑤 1

𝛼𝑤 W

# layers L=4
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SIREN ℜ

SIREN ℑ

Data fidelity term Physics-based term (Helmholtz equation)

Loss

Λ𝑖  = 𝜎𝑖(𝒙𝑖
𝑇𝜽𝑖 + 𝒃𝑖)

𝜎𝑖 𝑧 = sin ω0z + ෍

𝑤=1

𝑊

𝑛𝑤sin(𝛼𝑤𝑧) 



Upsampling spherical microphone array measurements
PINN results

Upsampling of real measurements of a spherical microphone arrays
• Comparison with SARITA [1] - Signal processing method
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[1] T. Lübeck, J. M. Arend, and C. Pörschmann, “Spatial upsampling of sparse spherical microphone array signals,” Trans. Audio Speech Lang. Process., vol. 31, pp. 1163–
1174, 2023.
[2] F. Miotello, F. Terminiello, M. Pezzoli, A. Bernardini, F. Antonacci and A. Sarti, "A Physics-Informed Neural Network-Based Approach for the Spatial Upsampling of 
Spherical Microphone Arrays," 2024 18th International Workshop on Acoustic Signal Enhancement (IWAENC), Aalborg, Denmark, 2024, pp. 215-219
[3] J. Xia and W. Zhang, “Upmix b-format Ambisonic room impulse responses using a generative model,” Applied Sciences, vol. 13, no. 21, p. 11810, 2023.



Considerations

Strict requirements if generated data are used for the development and training of space-time processing algorithms:
• Phase relationships (if we work with RTFs);
• Time delays (if we work with RIRs).
These constraints can be fulfilled through:
• Conditioning of the input (CVNN or diffusion models);
• Dedicated network architectures (PINNs).
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Network complexity

Difficulty in incorporating physics-based conditioning

PINNs Diffusion models

Difficulty in incorporating physics-based laws



Thank you!

Credits
Luca Comanducci
Federico Miotello
Luan Xinmeng
Mirco Pezzoli
Francesca Ronchini
Augusto Sarti
Ferdinando Terminiello
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