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* Hybrid (or model-based) deep learning

° Applications in (unsupervised) music source separation

° Applications in (unsupervised) Dereverberation
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Hi! PARIS is a multidisciplinary center dedicated to Al and Data Science
at the service of Science, Business and Society

Created in September 2020 by two leading institutions Joined by Inria in 2021
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Backed by leading corporate donors
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Hi! PARIS: Recognized as a French Al Cluster

In 2024, Hi! PARIS was designated as

one of the nine French Al Clusters, La France constitue Faascr)

des poles d'excellence

accelerating its growth. en formation sur
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RESEARCH

250

Faculty members in Al
& Data Science

41

Chairs have been funded since 2020

Boosting international attractiveness

13

ERC in Al (active in 2025)

+430

Articles in top-tier
journals and conferences
in Al

EDUCATION

PhD students
in Al & Data Science

Top-tier partner schools and universities

Students involved since 2021 in cross-
disciplinary Al/data activities
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Graduate Employability
(QS 2024)

Worldwide
QS World University Rankings (2026)
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Executive Education Worldwide (FT 2025)
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X-HEC in Europe (QS 2025)
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INNOVATION

An engineering team to bridge
research and development

50+ 15 7

Al projects  Open-source Tools built with

delivered packages researchers

(NLP, computer vision, anomaly detection, graphs, audio,
deep learning...)

of the French unicorn-founders
are alumn from our institutions

171

Startups in Al are founded,
incubated, or accelerated within
our entrepreneurial ecosystem
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High-impact public initiatives & events
around Al and society
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The ADASP research Group

Audio Data Analysis and Signal Processing @ Télécom Paris

https.//adasp.telecom-paris.fr/
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ADASP research group

The group

LTCI lab / IDS department/ S2A team/ ADASP

» 5 Faculty members + 1 Engineer

aldE Q8 & |

» 21 PhDs/ 3 Post-Doc/ 2 Research Engineers




TELECOM
Paris Machine listening and music content analysis Physiological data analysis
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<~  ADASP research group i

Multimodal perception and video analysis -

G. Richard [

Research topics ‘

Model-based audio
deep learning
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DOA estimation Sound event detection
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Sound event localization and detection output
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Signal processing, machine learning and Al for audio processing

Speech enhancement Source separation Neural Audio Coding
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ADASP research group

Research topics

Signal processing, machine learning and Al for audio generation

Music generation

The MLM: Melody-Lyrics Matching Task

Melody-lyrics Retrieval Melody-lyrics Alignment
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Hybrid (or Model-based) deep learning
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| i-AUDIO

Hi-AUDIO: Hybrid and Interpretable Deep Audio machines

HI-AUDIO is a European Research Council “Advanced Grant” (AdG) project supported by the European
Union’s Horizon 2020 research and innovation program under Grant Agreement-101052978.
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HI-AUDIO project: Context and motivation

[
[

Machine learning: a growing trend towards pure “Data-driven” deep learning approaches
High performances but some main limitations:

* “Knowledge” is learned (only) from data
* Complexity: overparametrized models
* QOverconsumption regime

* Non-interpretable/non-controllable

The main goal of Hi-Audio : 1[Il I1i-AUDIO
https://hi-audio.imt.fr/

Audio scene analysis, source separation

_ 4~
learning ‘. > =
\ f A

} &
Main goal : To build controllable and frugal machine Audio representation
listening models based on expressive generative modelling S

Sound transformation

The approach: to build Hybrid deep learning models, by integrating

(style transfer, dereverberation,...)
our prior knowledge about the nature of the processed data. ]
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Towards model-based deep learning approaches

High

Use of Scientdic Theory

* Coupling model-based and deep learning:

Physics-based Models

Physics-guided
Neural Networks
(PGNN)

Black-box Neural Networks

Use of Data

e
/

Example with Hybrid deep model for Music signals

Knowledge Sources

Signal Models

F1
F2

F3

Physical Models

Musical Models
% Beethoven:

f—-"."‘“fﬁ‘.{
f'« N

Perceptual Models
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Dataset Curation A
& Augmentation
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||

il U
( Input Hybrid Deep ( Loss
Representations Learning Models Functions

G. Richard, V. Lostanlen, Y.-H. Yang, M. Miiller, “Hybrid Deep Learning for Music Information Research”, IEEE Signal Processing Magazine - Special Issue

on Model-based and Data-Driven Audio Signal Processing, 2025
Hi-Audlio, Hybrid and Interpretable Deep neural audio machines, European Research Council “Advanced Grant” [AdG) project - https://hi-audio.imt.fr/
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Some results W

Knowledge Sources \

Musical Models ( Perceptual Models )
% Beethoven

Model-based deep learning for audio signals [1] I — y 1
== ( L;:::;:: z‘::,':.s i

Music generation, Style transfer, sound transformation: i

* Novel Structure-informed Positional Encoding (PE) methods for i ' *O‘ 18 "_-_

using transformers of linear complexity [2,3]

* Interpretable music synthesis and sound transformation algorithms exploiting diffusion models [4]
* Unsupervised model-based deep learning for musical source separation (singing voice, drums) [5,6]
* New disentangled discrete representations for sound transformation or joint audio coding and source separation [7,8]

Deep Hybrid dereverberation : combining differentiable physical model of reverberation with deep learning
for speech dereverberation [9]

| Hi-AUDIO I e B

L Ty PN ———

el — e P - e

Development and launch of the HI-AUDIO platform for distributed music recordings s/ Ay
(to gather a large, varied, multi-genre, multi-track, multi-instruments annotated musSIiC = s ——e i

. . . . LR R IR I"— ! &
database) : https://hiaudio.fr/ [10]
ol
==
=
[1] G..Richard, V. Lostanlen, Y.-H. Yang, M. Muller, “Model-based Deep Learning for Music Information Research”, IEEE Signal Processing Magazine, 2024 |8 - -

[2] M. Agarwal C. Wang, G. Richard. F-StrIPE: Fast Structure-Informed Positional Encoding for Symbolic Music Generation, ICASSP 2025.

[3] M. Agarwal C. Wang, G. Richard. Of All StrIPEs: Investigating Structure-informed Positional Encoding for Efficient Music Generation, https://arxiv.org/pdf/2504.05364

[4] T. Baoueb, X. Bie, H. Janati, G. Richard. WaveTransfer: A Flexible End-to-end Multi-instrument Timbre Transfer with Diffusion. MLSP 2024.

[5] K Schulze-Forster, G. Richard, L. Kelley, C. Doire, R Badeau Unsupervised Music Source Separation Using Differentiable Parametric Source Models, IEEE Trans. On AASP, 2023
[6] B. Torres, G. Peeters, G. Richard, “The Inverse Drum Machine: Source Separation Through Joint Transcription and Analysis-by-Synthesis”, https://arxiv.org/abs/2505.03337

[7] X. Bie, X. Liu, G. Richard. Learning Source Disentanglement in Neural Audio Codec. ICASSP 2025

[8] B. Ginies, X. Bie, O. Fercoq, G. Richard, Soft Disentanglement in Frequency Bands for \\ Neural Audio Codecs, Eusipco 2025

[9] Louis Bahrman, Mathieu Fontaine, Gaél Richard, U-DREAM: Unsupervised Dereverberation guided by a Reverberation Model, 2025, preprint https://hal.science/hal-05158698v1
[10] J. Gil Panal, A. David, G. Richard, “The Hi-Audio online platform for distributed music recordings”, Submitted to the Eurasip Journal on Audio, Speech and Music Processing, 2025



https://arxiv.org/abs/2505.03337
https://hiaudio.fr/
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* Unsupervised model-based deep learning for musical source separation (singing voice, drums) [5,6]

* Deep Hybrid dereverberation : combining differentiable physical model of reverberation with deep learning
for speech dereverberation [9]

| Hi-AUDIO "o "
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° Happy Birthday Multitrack Master File
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[1] G..Richard, V. Lostanlen, Y.-H. Yang, M. Muller, “Model-based Deep Learning for Music Information Research”, IEEE Signal Processing Magazine, 2024 [® -
[2] M. Agarwal C. Wang, G. Richard. F-StrIPE: Fast Structure-Informed Positional Encoding for Symbolic Music Generation, ICASSP 2025. ‘
[3] M. Agarwal C. Wang, G. Richard. Of All StrIPEs: Investigating Structure-informed Positional Encoding for Efficient Music Generation, https://arxiv.org/pdf/2504.05364
ity [4] T. Baoueb, X. Bie, H. Janati, G. Richard. WaveTransfer: A Flexible End-to-end Multi-instrument Timbre Transfer with Diffusion. MLSP 2024.
("\" [5] K Schulze-Forster, G. Richard, L. Kelley, C. Doire, R Badeau Unsupervised Music Source Separation Using Differentiable Parametric Source Models, IEEE Trans. On AASP, 2023
\.@_‘_\‘3 [6] B. Torres, G. Peeters, G. Richard, “The Inverse Drum Machine: Source Separation Through Joint Transcription and Analysis-by-Synthesis”, https://arxiv.org/abs/2505.03337

[7] X. Bie, X. Liu, G. Richard. Learning Source Disentanglement in Neural Audio Codec. ICASSP 2025

[8] B. Ginies, X. Bie, O. Fercoq, G. Richard, Soft Disentanglement in Frequency Bands for \\ Neural Audio Codecs, Eusipco 2025

[9] Louis Bahrman, Mathieu Fontaine, Gaél Richard, U-DREAM: Unsupervised Dereverberation guided by a Reverberation Model, 2025, preprint https://hal.science/hal-05158698v1
[10] J. Gil Panal, A. David, G. Richard, “The Hi-Audio online platform for distributed music recordings”, Submitted to the Eurasip Journal on Audio, Speech and Music Processing, 2025
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Deep hybrid De-reverberation
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Reverberation : definition

€. (RIS ° “In acoustics, reverberation is a persistence of sound after it is produced” [1]

Model-based audio
deep learning (]

It is often created when a sound is reflected on surfaces, causing multiple

reflections that build up and then decay as the sound is absorbed by the
surfaces of objects in the space [2]

Reverberation in a room Reverberation in an open space

= .

o
s

[1] Wikipedia, from Valente, Michael; Holly Hosford-Dunn; Ross J. Roeser (2008). Audiology. Thieme. pp. 425-426. ISBN 978-1-58890-520-8.
[2] Wikipedia, from Lloyd, Llewelyn Southworth (1970). Music and Sound. Ayer Publishing. pp. 169. ISBN 978-0-8369-5188-2.



https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-58890-520-8
https://www.hcmmusic.net/
https://www.hcmmusic.net/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8369-5188-2
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Reverberation: Room effect

* Room effect can be decomposed in:

* A contribution due to early echoes or early reflexions (which depends on
the room geometry and on the positions of the source and microphone)

* A contribution due to late reverberation (which mainly depends on the

volume and global absorption of the room)

dB

The Room Impulse Response (RIR)

Direct path
Room Effect

Early echoes

Late reverberation

time
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Reverberation: Room effect

i Direct path

dB Room Effect
' Early echoes

Late reverberation

time

* Room effect = filtering effect

y(t) = [7 x(t — u)h(u)du

0

Zio z(n —i)h(i)

=

e
=

S’
|

The Room Impulse Response (RIR)
(or acoustic channel)
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6. Richard ° Dereverberation: removing the reverberation effect to retrieve the original source (or
« dry » signal)

Applications: Reverberation and Dereverberation

Model-based audio

deep learning .

"Recovering Z(n) from the reverberated signal y(n)

* Applications:
* Speech enhancement (especially late reverberation removal to increase intelligibility)
* Robust speech recognition
* Acoustic transfer
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G. Richard * Machine learning: a growing trend towards pure “Data-driven” deep learning
approaches

Towards model-based deep learning approaches

Model-based audio
deep learning

music database

“WEt”
* -
"Wet" Signgﬂ Estimated
"Dry" signal




Towards model-based deep dereverberation
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* EXxploiting a physical model of reverberation

Model-based audio
deep learning

"physical" model

"Wet" signal

v

Estimated
"Dry" signal

-
-~ \
A ™,
%
\i\ \\'f-\:"\‘i
e
g

Louis Bahrman, Mathieu Fontaine, Gaél Richard, U-DREAM: Unsupervised Dereverberation guided by a Reverberation Model, 2025, preprint
S https://hal.science/hal-05158698v1
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=AW Exploiting a room impulse response model ~ t  biectpan
V2. 1P PARIS ' Early echoes l
G. Richard Late
everberation
Made/—basgd audio
deep learning * The RIR model: important parameters:

time
* Direct-to-Reverberant ratio (DRR): quantifies the energy balance
between the direct path and the reverberant tall

ng h2
DRRdB—l()logm( 2nzo (1) )

Z’Zoznd-l—l h2 (n)

°* Reverberation time RTs : can be estimated (Under idealized
conditions) from the slope of the energy decay curve (EDC)

EDCy(t) = /+OO h(u)du,

\'i P. A. Naylor and N. D. Gaubitch, Eds., Speech Dereverberation, ser. Signals and Communication Technology. London: Springer London, 2010.
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°* DRR and RT60 are sufficient to characterize the Polack (late) reverberation model [1]

deep learning

}J,T(‘rt) — b(n)e—nh-? F”“F'“'” Room Effe
° With b(“ﬁ,) ~ N(Oj gg) and T = ﬁ :

For reverberation, the polack model is valid after the « mixing time » n,, = (4V f,)/(
where V . f, ¢

m = (4V fs)/(cA),
- fs, ¢, A are respectively the room volume, the sampling frequency, the
speed of sound and the area of the walls.

o

P

\ _3 [1] J.-D. Polack, “La transmission de I'energie sonore dans les salles,” Ph.D. dissertation (in French), Université du Maine, 1988
\".- "‘



TS
m ZE

@, IP PARIS

G. Richard

Model-based audio
deep learning

Towards model-based deep dereverberation
Exploiting a room impulse response model

Reverberation
matching loss
o[ e
Estimated
dry STFT S
Dereverberation
model
(learnt)
Reverberant |{Convolutive
STFTY model |
Reverberation | RIR — Estimated
parameters © Synthesizer Synthesized reverberant
RIR £ STFTY Regularization term
Training only

/ (for low amplitudes)

~ 2
' : ; 2 1+ 9|Yy,
* Reverberation Loss used: £=) |[Y;;—Y|*+ A log
1+ 9|Y5,
fﬂt’ '
.’"‘-\'-- \\;3 L. Bahrman, M. Fontaine, and G. Richard, “A Hybrid Model for Weakly Supervised Speech Dereverberation,” in ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech
}3}?}. and Signal Processing 873 (ICASSP), Apr. 2025,

S. Schwar and M. Miiller, "Multi-Scale Spectral Loss Revisited,” IEEE Signal Process. Lett., vol. 30, pp. 1712-1716, 2023.
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Towards model-based deep dereverberation

Exploiting a room impulse response model

* Main advantages of the model
* Can be trained in an unsupervised way
(no needs of pairs Wet- dry of signals)

* The dereverberation model is more interpretable
and controllable (e.g. use « physical » constraints)

* Smaller network may be sufficient to obtain similar

performances than bigger networks trained in a
supervised way

- .

4 "F\_- R
\?«Ej\i Speech and Signal Processing 873 (ICASSP), Apr. 2025,

Reverberation
matching loss
* L
Estimated
dry STFT §
Dereverberation
model
(learnt)
Reverberant |{Convolutive
STFTY model |
Reverbemtion_’ RIR | Estimated
parameters @ Synthesizer Synthesized reverberant
RIR h STFTY

Training only

L. Bahrman, M. Fontaine, and G. Richard, “A Hybrid Model for Weakly Supervised Speech Dereverberation,” in ICASSP 2025 - 2025 IEEE 872 International Conference on Acoustics,
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U-DREAM: the extension to “Unsupervised Dereverberation”
guided by a Reverberation Model

G. Richard

Reverberant
STFTY

The optimization problem

Model-based audio
deep learning

S, 0 = argmin Ep(ne) [HY —C(S, iz)||f7] l | l ]
NG Acoustic Dereverberation
analyzer A model D
ACDUSUC l 7
parargeters 3
] RIR
* An Acoustic Analyzer to estimate Lol ot
acoustic parameters for sampling u | ll !
candidate Room Impulse Responses TimeFracquency
(8.0 )l C(S‘,h-'—’?]l l c(s,i.‘”)l
* RIR sampler, using Polack’s model

Reverberation Matching Loss £ <«

as previously, but several draws | : =
pOSS|b|e C("-”""")l f("-ﬁ'-h"-)l | l L'(Y..\',h")l

Averaging or selection [£

!

32 /\ \i Louis Bahrman, Mathieu Fontaine, Gaél Richard, U-DREAM: Unsupervised Dereverberation Training
?«“ guided by a Reverberation Model, 2025, preprint https://hal.science/hal-05158698v1 loss
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35

Towards model-based deep dereverberation
Exploiting a room impulse response model

Some results

* Dataset used: EARS-ISM (synthetic RIR) - EARS-Reverb (Real RIRS)

* Dereverberation model used: BILSTM (2-layer 599 bidirectional LSTM model followed by a
linear layer, performing subband processing of the STFT magnitudes).

* Pre-trained Acoustic Analyzer: Parameter MSE loss, trained with 100 samples of couple
(Y, ©={DRR, RT¢})

* Evaluation (objective) metrics
* SI-SDR (« signal distorsion »),
* PESQ (« perceptual quality »
e STOI (« intelligibility »),
* SRMR (« reverberation »)

L. Bahrman, M. Fontaine, and G. Richard, “A Hybrid Model for Weakly Supervised Speech Dereverberation,” in ICASSP 2025,Apr. 2025,
L. Bahrman, M. Fontaine, G. Richard, U-DREAM: Unsupervised Dereverberation guided by a Reverberation Model, 2025, preprint https://hal.science/hal-05158698v1
(EARS): J. Richter, Y.-C. Wu, S. Krenn, S. Welker, B. Lay, S. Watanabe, A. Richard, and T. Gerkmann, “EARS: An Anechoic Fullband Speech 1001 Dataset Benchmarked for Speech Enhancement and
Ny 3 Dereverberation,” 1002 in Interspeech 2024.
¥y (BILSTM): F. Weninger & al. “Speech Enhancement with LSTM Recurrent Neural Networks and its Application to Noise-Robust ASR,” in Latent Variable Analysis and Signal Separation, E. Vincent,
i A. Yeredor, Z. Koldovsk and P. Tichavsk'y, Eds. Cham:Springer International Publishing, 2015, pp. 91-99.
(WPE) T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, “Speech Dereverberation Based on Variance-Normalized Delayed Linear Prediction,” IEEE Trans. ASLP, vol. 18, no. 7, Sep. 2010.

v
-------
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Model-based audio

Towards model-based deep dereverberation
Exploiting a room impulse response model

deep learning Synthetic RIRs Real RIRs
Supervision type Supervision T SISDR ESTOI WDB-PESQ SRMR T SISDR. ESTOI WDB-PESQ SRMR
Dry speech (~2.0+6.1 0.75+0.12 2.15+0.64 7.7+3.6 —14.5+9.2 0.61+0.13 1.73+0.41 6.5+2.9"
strong Exact RIR |-2.3+5.8 0.72+0.13 1.99+0.66 8.5+3.6 —15.6H0.6 0.61+0.14 1.75+0.46 6.5+2.8
weak Oracle parameters | —1.7+5.4 0.67+0.15 1.744+0.62 6.4+3.0 —14.54+8.1 0.58+0.13 1.64+0.39 54+2.6 '
unsupervised Pretrained Acoustic Analyzer |—3.6+5.1 0.64+0.12 1.624+0.43 8.0+3.4 —14.5+8.7 0.57+0.12 1.58+0.31 6.2+2.9
WPE \2.14+5.0 0.724+0.14 1.914+0.76 6.94+3.4 —15.84+9.1 0.544+0.17 1.54+0.43 5.2+ 3.2
Reverberant —6.7+6.4 0.67+0.15 1.79+0.64 82+59 —16.1£9.3 0.52+0.17 1.484+0.36 4.8+2.9

* All methods perform some level of dereverberation

L. Bahrman, M. Fontaine, and G. Richard, “A Hybrid Model for Weakly Supervised Speech Dereverberation,” in ICASSP 2025,Apr. 2025,
L. Bahrman, M. Fontaine, G. Richard, U-DREAM: Unsupervised Dereverberation guided by a Reverberation Model, 2025, preprint https://hal.science/hal-05158698v1

(EARS): J. Richter, Y.-C. Wu, S. Krenn, S. Welker, B. Lay, S. Watanabe, A. Richard, and T. Gerkmann, “EARS: An Anechoic Fullband Speech 1001 Dataset Benchmarked for Speech Enhancement and

Dereverberation,” 1002 in Interspeech 2024.

36 S
% >

(BILSTM): F. Weninger’& al. “Speech Enhancement with LSTM Recurrent Neural Networks and its Application to Noise-Robust ASR,” in Latent Variable Analysis and Signal Separation, E. Vincent,
;?.-I'-“ A. Yeredor, Z. Koldovsk and P. Tichavsk y, Eds. Cham:Springer International Publishing, 2015, pp. 91-99.
(WPE) T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, “Speech Dereverberation Based on Variance-Normalized Delayed Linear Prediction,” IEEE Trans. ASLP, vol. 18, no. 7, Sep. 2010.
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Towards model-based deep dereverberation

Exploiting a room impulse response model

Some results

Synthetic RIRs Real RIRs
Supervision type Supervision T SISDR ESTOI WDB-PESQ SRMR T SISDR. ESTOI WDB-PESQ SRMR

Dry speech —2.0+6.1 0.7564+0.12 2.15+ 064 7.7+3.6 —14.5+9.2 0.61+0.13 1.73+0.41 6.5+29

strong Exact RIR —2.3+5.8 0.72+0.13 1.99+0.66 8.5+3.6 —15.6H0.6 0.61+0.14 1.75+0.46 6.5+2.8
weak Oracle parameters —1.7+5.4 0.67+0.15 1.744+0.62 6.4+3.0 —14.5+8.1 0.58+0.13 1.64+0.39 54+2.6 '

unsupervised Pretrained Acoustic Analyzer —3.6+5.1 0.64+0.12 1.624+0.43 8.0+34 —145+87 0.57+0.12 1.58+0.31 6.2+29

WPE —2.14+5.0 0.724+0.14 1.94+0.76 6.9+3.4 —15.8+9.1 0.54+0.17 1.54+0.43 5.2+ 3.2

Reverberant —6.7+6.4 0.67+0.15 1.79+0.64 82+59 —16.1£9.3 0.52+0.17 1.484+0.36 4.8+2.9

* Weakly-supervised method outperforms the baseline WPE on most metrics

(especially on real RIRs)

L. Bahrman, M. Fontaine, and G. Richard, “A Hybrid Model for Weakly Supervised Speech Dereverberation,” in ICASSP 2025,Apr. 2025,
L. Bahrman, M. Fontaine, G. Richard, U-DREAM: Unsupervised Dereverberation guided by a Reverberation Model, 2025, preprint https://hal.science/hal-05158698v1

(EARS): J. Richter, Y.-C. Wu, S. Krenn, S. Welker, B. Lay, S. Watanabe, A. Richard, and T. Gerkmann, “EARS: An Anechoic Fullband Speech 1001 Dataset Benchmarked for Speech Enhancement and

Dereverberation,” 1002 in Interspeech 2024.

T

S

(BILSTM): F. Weninger’& al. “Speech Enhancement with LSTM Recurrent Neural Networks and its Application to Noise-Robust ASR,” in Latent Variable Analysis and Signal Separation, E. Vincent,
A. Yeredor, Z. Koldovsk and P. Tichavsk y, Eds. Cham:Springer International Publishing, 2015, pp. 91-99.
(WPE) T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, “Speech Dereverberation Based on Variance-Normalized Delayed Linear Prediction,” IEEE Trans. ASLP, vol. 18, no. 7, Sep. 2010.
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Towards model-based deep dereverberation

Exploiting a room impulse response model

Some results

Synthetic RIRs Real RIRs
Supervision type Supervision T SISDR ESTOI WDB-PESQ SRMR T SISDR. ESTOI WDB-PESQ SRMR

Dry speech —2.0+6.1 0.7564+0.12 2.15+ 064 7.7+3.6 —14.5+9.2 0.61+0.13 1.73+0.41 6.5+29

strong Exact RIR —2.3+58 0.72+0.13 1.99+0.66 8.5+3.6 —1564H0.6 0.61+0.14 1.75+0.46 6.5+2.8
weak Oracle parameters —1.7+5.4 0.67+0.15 1.744+0.62 6.4+3.0 —14.54+8.1 0.58+0.13 1.64+0.39 5.4+ 2.6 '
unsupervised Pretrained Acoustic Analyzer —3.6+5.1 0.64+0.12 1.624+0.43 8.0+3.4-145+87 057+0.12 1.58+0.31 62+4+29 |

WPE —2.14+5.0 0.724+0.14 1.94+0.76 6.9+3.4 15.84+9.1 0544017 1.544+043 52+32

Reverberant —6.7+6.4 0.67+0.15 1.79+0.64 82+59 —16.1£9.3 0.52+0.17 1.484+0.36 4.8+2.9

* Unsupervised method is efficient, in particular on Real RIRs

L. Bahrman, M. Fontaine, and G. Richard, “A Hybrid Model for Weakly Supervised Speech Dereverberation,” in ICASSP 2025,Apr. 2025,
L. Bahrman, M. Fontaine, G. Richard, U-DREAM: Unsupervised Dereverberation guided by a Reverberation Model, 2025, preprint https://hal.science/hal-05158698v1

(EARS): J. Richter, Y.-C. Wu, S. Krenn, S. Welker, B. Lay, S. Watanabe, A. Richard, and T. Gerkmann, “EARS: An Anechoic Fullband Speech 1001 Dataset Benchmarked for Speech Enhancement and

Dereverberation,” 1002 in Interspeech 2024.

T

(BILSTM): F. Weninger’& al. “Speech Enhancement with LSTM Recurrent Neural Networks and its Application to Noise-Robust ASR,” in Latent Variable Analysis and Signal Separation, E. Vincent,
;?.-I'-“ A. Yeredor, Z. Koldovsk and P. Tichavsk y, Eds. Cham:Springer International Publishing, 2015, pp. 91-99.
(WPE) T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, “Speech Dereverberation Based on Variance-Normalized Delayed Linear Prediction,” IEEE Trans. ASLP, vol. 18, no. 7, Sep. 2010.
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.; Exploiting a room impulse response model

G. Richard
* Some sounds (weak-supervision results)
Model-based audio
deep learning
: Ground FSN BiLSTM : .
WS v X V4 X v
RT60=0.6
[ J

More audio demo at https://louis-bahrman.qgithub.io/Hybrid-WSSD/

39 _/"'_ﬁ\ :

L. Bahrman, M. Fontaine, and G. Richard, “A Hybrid Model for Weakly Supervised Speech Dereverberation,” in ICASSP 2025 - 2025 IEEE 872 International Conference on Acoustics, Speech and Signal
\ - i Processing 873 (ICASSP), Apr. 2025,
\":"}""

(WPE) T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, “Speech Dereverberation Based on Variance-Normalized Delayed Linear Prediction,” IEEE Trans. ASLP, vol. 18, no. 7, Sep. 2010
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Towards Hybrid deep learning

... by integrating our prior knowledge about the nature of the processed data.

* For example in music source separation

Polyphonic music

-

music database

Main limitations:

Difficulty to obtain « aligned » data
Knowledge learned (only) from data
Complexity: overparametrized models
Overconsumption regime
Non-interpretable/non-controllable
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The source filter model

an efficient speech production model

ST ' Source signal Resonator |

| .

N - ' (Vocal folds) ™ (Vocal/nasal tracts) Speech |
| i i
| |

SOUrCe . ._ ................................. ._ ............................... ._ ..... I

>
»
T

/.-" B

\\\\\\

»

*\»\\?;;_3 Fant, G. Acoustic theory of speech production, 1960, The Hague, The Netherlands, Mouton.

v

S
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Towards Hybrid deep learning

... by integrating our prior knowledge about the nature of the processed data.

Knowledge about « how the sound is produced « (e.g. sound production models)

Singing voice as a source / filter model
s * source = vibration of vocal folds
b

vocal folds [ J

Filter = resonances of vocal/nasal cavities

* Differentiable .

Generative
. audio models -
Polyphonic music ‘_, ‘_,. X Y Synthesized music
o P .
- o > + —
e - ) ‘

——> Magnitude spectrogram loss <«
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Towards Hybrid deep

learning

... by integrating our prior knowledge about the nature of the processed data.

* Application for unsupervised audio source separation (choir singing)

* Differentiable .

. Generative

. audio models -

Polyphonic music

> Magnitude spectrogram loss

Y Synthesized music

> .-

-<-

/Highlights

* Unsupervised :

\

* Learning only from the
polyphonic recording (no need of
the true individual tracks)

* Homogeneous sources :

* All sources have similar acoustic
k properties /

\\“i K. Schulze-Forster, G. Richard, L. Kelley, C. S. J. Doire and R. Badeau, “Unsupervised Music Source Separation Using

S Differentiable Parametric Source Models,” in /JEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.
31, pp. 1276-1289, 2023, doi: 10.1109/TASLP.2023.3252272. (Open Access)



Unsupervised learning strategy

m A (e.g. no need of the individual source signals)
W& 1P PARIS
G. Richard AR AR _
’ Differentiable -+ fundamental frequency (FO0)
g@fggﬁ%aud/o - generative other synthesis parameters

(1]| Multiple FO | | FO-to-source W source models

.

Source 1

V\r

Source 2

Mixtures 'l Mixture J DNN Source J

J Spectral L
loss

Nkt

Synthesized
mixture

N/

/?"-..-‘\\
45 \\\\\3 [1] H. Cuesta, B. McFee, and E. Gbmez. Multiple fO estimation in vocal ensembles using convolutional neural networks. ISMIR, 2020.
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Parametric source models

Singing voice as a source / filter model

source = vibration of vocal folds

(1]| Multiple FO }, FO-to-source
assignment

estimation

Differentiable
. generative
. source models

,\\\n

& =
M Mixture

Filter = resonances of vocal/nasal cavities

excitation source

filter

voice signal

DNN

Spectral
loss

—+ fundamental frequency (F0)
other synthesis parameters

Synthesized
mixture
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Parametric source models

parameterizes the harmonic signal

r(t) v harmonics .
filter [h() a( » (t)

fo(t)
fundamental frequency
i I

excitation source filter voice signal

white noise

w(t)

ay(n)
filter coefficients

T

Line spectral frequencies Wk

O<wp <wpgr <
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‘| Linear

(LSFeomputation| (J, N, K) )

Mixture (1, N, F)

b s -

' Linear

v

Mixture encoder

" [ Scale and shift | (1,N,F) | "
‘[ GRUX3 | (1,N,256) | !

I - '
(1,N, 128) | |

(Latent mixture representation] '
: X

:\[ Duplicate | (J, N, 128) ) -

Global architecture overview

( FO LN 1)

( HztomDl | (N, 1) |
( MDIto[0,1] | (U, N,1) |

: MLP | (J,N,512) MLP (4N, 512) |
! S |
5 | R 72
8! ( Concatenate |(J, N, 1024))
o | > ! :
A | GRU  [(UN.512)]
. MLP (4 N,512)
R g oy e o, o ., . g - * ..................................
[ Latent source representations ]
2
W v s | ey
i Linear CUN 1) ‘ Linear SN 1)
' 1 = = ' R | = g
(Exponentlal sigmoid I (J, N, 1) ] ! (Exponenﬂal s‘igmoldl (J, N, 1)] :
, 5 ; v :
' [ Harmonic amplitude a(n) ] ; : [ Noise gain g(n) ] ;
___________________________ - J s @ il el e B W e e R e e

R 3

LN K1) |

[ Line spectral frequencies ]

(Agorittm1 | WK ) |

' [ All-pole filter coeff. ax(n)) |

P

[ GRU (lastframe) | (J,1,L) |
' I = '
[Exponential sigmoid] (J,1,L) ]

{ Noise filter magnitudes ]

- (Window method |0, 1,2L-1))

( Noise filter IR d(t) ]

Mixtures

[11[

Multiple FO | FO-to—source]
estimation

assignment |\~

!

. Source 2 J

Differentiable - fundamental frequency (F0)

generative other synthesis parameters
source models

Source 1

Synthesized
mixture

Mixture DNN

Source J

Spectral
loss |
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Sl * Unsupervised (US) = supervised (SU)
Model-based audio 20 o & o L A . /4 ; e ey . I .
deep learning ; y: b\ 7 NS NS 0 /,*
— - y ‘ AN .: AN
m { H ).\ X H / H / f\ H £ H y..§ H H |
- / \ / \ / \,\. ..-' \ / \
pe 04 \T7 \:.‘ / / 1/ \T/ (.‘
= . W J | A ' | | VI
= 4 | W | W/ |/
o |
Ul'l 4
n —-20 A
~40 T median:/5.82 [5.67 7.60 7.56 7.91 7.42 1571 2.72
/mean: |5.00 4.69 691 6.65 7.15 6.49 4.44 1.50

NMF1 NMF2 US-F US-S SV-F SV-S Unet-F Unet-S

(b) J = 4 sources

AN NMF1]S. Ewert and M. M"uller, “Using score-informed constraints for NMF- based source separation,” in Proc. IEEE Int. Conf. on Acoustics,
?«;S\\i Speech and Signal Processing. IEEE, 2012, pp. 129-132.

NMF24]J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid- evel representation for pitch estimation and musical audio source

Separation,” IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180-1191, 2011.

UNET:|D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, “Deep learning based source separation applied to choir ensembles,”

52 m Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733-739.
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SRl * Unsupervised (US) = supervised (SU) ” l
Model-based audio 20 4 7 ST e i
doep learning * Almost no drop of performances when VN H H H AN
using only 3% of the training data S ol i) [ﬂ H H/
(US-F vs. US-S and SV-F vs. SV-S) £ WS e,
B -204
40

|median:5.82 5.67 7.60 7.56 7.91 7.42 [5.71 2.72
/mean: |5.00 4.69 691 6.65 7.15 6.49 4.44 1.50

NMF1 NMF2 US-F US-S SV-F SV-S Unet-F Unet-S

(b) J = 4 sources

s Sl NMF1]S. Ewert and M. M uller, “Using score-informed constraints for NMF- based source separation,” in Proc. IEEE Int. Conf. on Acoustics,
\:*:Si Speech and Signal Processing. IEEE, 2012, pp. 129-132.
NMF2:]J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid- evel representation for pitch estimation and musical audio source
Separation,” IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180-1191, 2011.
lUNET:
[

D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, “Deep learning based source separation applied to choir ensembles,”
53 n pProc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733-739.
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Model-based audio 20 ' ' ' B (MY RN Y, . i o
el * Almost no drop of performances when — N H H H H
using only 3% of the training data S ) H) (H H H/
(US-F vs. US-S and SV-F vs. SV-5) § | ey
B ~20-
* ..much larger drop of performances of
the SuperVISed basellne mOdeI (Unet) _40'.median: 5.82 |5.67 7.60 7.56 7.91 7.42 |5.71 2.72
/mean: |5.00 4.69 691 6.65 7.15 6.49 4.44 1.50
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NMF1:

NMF1 NMF2 US-F US-S SV-F SV-S Unet-F Unet-S

(b) J = 4 sources

S. Ewert and M. Mueller, “Using score-informed constraints for NMF- based source separation,” in Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing. IEEE, 2012, pp. 129-132.

NMF2:

J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid- evel representation for pitch estimation and musical audio source
tion,” IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180-1191, 2011.

D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, “Deep learning based source separation applied to choir ensembles,”

Separa
lUNET:
I Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733-739.
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Towards a fully differentiable model for unsupervised
singing voice separation

* Integration of multi-FO extractor and automatic voice assignment

Mixture

fpoeren

y

Resample + HCQT

l ~ Salience Map (S™)
A4

(
Mixture Encoder | | Multi-F0 estimator ’ > ® -

' M“/”H)Av”gnm"m ‘ [ Assigned Saliences (S%)

Hz — MIDI » [0,1]

—

Decoder ¢ Differentiable generative source
1 g models

F ()E m actor

Source |

Source models 5 ) ) J S 5 i
t , Synthesis ource i
parameters : _ .

. L\owu. J

Estimated Mixture

./"i_f\ \?‘i G. Richard, P. Chouteau, B. Torres A fully differentiable model for unsupervised singing voice separation, . /EEE International Conference on
\\*2: Acoustics, Speech and Signal Processing (ICASSP), Apr 2024, Seoul, South Korea.
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Towards a fully differentiable model for unsupervised
singing voice separation

* Extraction of FO sequences from assigned salience maps.

Mutiple FO
. Assignment (CNN)

| Multiple FO
L estimator

Assigned

E[anch Voice]é  ExtractionF0 Li[BranCh Voice]g %[Branch Voice |

. | Peak-Picking & Threshold

™ : : :
+ J | z s
. Reconstruction )i ! Frequency’

Non-differentiable
function

-

Binary

Saliences Assigned Saliences

F0Os Extractor

G. Richard, P. Chouteau, B. Torres A fully differentiable model for unsupervised singing voice separation, . /EEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Apr 2024, Seoul, South Korea.

N G B RS G ’ Mask Vrasnsssanasssenaas
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Towards a fully differentiable model for unsupervised

=™ singing voice separation
'Qg,w PARIS g g p
G. Richard
* End-to-end approach less accurate
T than the baseline semi-integrated
deep learning approaCh Model SI_.SDR [dB] OA [%] RPA [%] RCA [%]
i Md x4 Md p Md p Md
* Train data: Bach Chorales-Barbershop Quartet
(BCBSQ) UMSS [1] 691 7.60 - - - - - -
U-Net [2_][] 444 5.71 - - - - - -
* Test data: Choral Singing Dataset (CSD) Wi G 203 359 66 68 72 75 73 77
SrrSrr 481 6.07 73 79 80 87 82 88
SFSFT 5.77 6.46 78 82 85 90 85 89
Wup 6.20 6.91 79 84 87 91 88 92
* ... but much more robust on out of
domain data
° Train data: Bach Chorales-BarbershoB Qéjartet Model BCI1Song BCBSQ
(BCBSQ) or BC1Song (e.G. reduced BCBSQ)
JL Md 0 Md
* Test data: Cantoria UMSS M 031 073 086 1.38
U-Net [&H -231 207 097 147
Wup 1.93 261 329 3.79
57 .’"\:ﬂ\j G. Richard, P. Chouteau, B. Torres A fully differentiable model for unsupervised singing voice separation, . [EEE International Conference on

\?“):i Acoustics, Speech and Signal Processing (ICASSP), Apr 2024, Seoul, South Korea.
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A short audio demo and some take aways

* A short demo at

* https://schufo.qgithub.io/umss/

* Qu local link

° And for the fully differentiable model at:

* https://pierrechouteau.qgithub.io/lumss icassp/audio



https://schufo.github.io/umss/
file:///D:/Documents/Thèses/2018-Kilian-Schulze-Forster/site-web-demo-unsupervised-source-separation/schufo.github.io/umss/index.htm
https://pierrechouteau.github.io/umss_icassp/audio
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e A novel

i |nverse Drum machine

analysis-by-synthesis
framework  for Drum  Source
Separation (DSS)

® works without isolated stems, relying
only on transcription data for training.

A jointly trained model that unifies
Automatic Drum Transcription (ADT)
and One-shot drum Sample Synthesis
(OSS) in a single end-to-end system.

A modular separation model that
achieves separation quality
comparable to supervised, state-of-
the-art methods while using = 100
times fewer parameters.

18§

Input drum mix

Oy bty

Feature extraction

Y

Synthesis Conditioning

Decoder

)i Sequencer }(—-———

One-shot
synth

I\

Y

STFT masking

E E *" E - — bR - E

5 5 g | . Synthesi Macked |

 Transcription . One-shots ' | yn. er a.s £ :

: ; ' estimate estimate
ADT OSS DSS

B. Torres, G. Peeters and G. Richard, "The Inverse Drum Machine: Source Separation Through Joint Transcription and Analysis-by-Synthesis," in /EEE
Transactions on Audio, Speech and Language Processing, vol. 34, pp. 84-95, 2026, Preprint accessible at:https://hal.science/hal-05056592/document
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Inverse Drum machine : a Multitask learning for

Drum Source Separation

1. Automatic Drum Transcription (ADT): The
precise estimation of the onset times of each
drum instrument is achieved by training a
transcription head to predict onset activations.

2. One-shot drum Sample Synthesis (OSS):
High-quality one-shot samples for each drum
instrument are generated by a Temporal
Convolutional Network (TCN) conditioned on
instrument type and mixture embedding.

3. Drum Source Separation (DSS): Individual
drum tracks are extracted from the mixture by
sequencing the synthesized one-shot samples
with the estimated transcription.

GT Transcription

1]

p | . Drum
@] = Pt | kit label
"""" VR v
Lo ( Random gain ] T
x|(T) z
| Log-mel ]

\ Encoder /

, Frame features (z) | (D2, M)

N

Avgi’ool
MLP

[ Transcription head

] AvglPool
[9) V|(K, M) MLP aEE

Peak-Picking
On inference ! el(p HH SD KD
M O v ( e) Class
R X CO”CM(],’: - one-hot
Track volume (g) |(K) Activations (a) |(K, M) Conditioning(c) [(K, K + De¢)

4 UssamplE N One-shot
. synth

[ Conv1D Sequencer

One-shots (w)

1

—>{ X

a=

e - —-— .
xsynth rw r—

\ 2090

Individual tracks

I

( Mixing (sum)

% §(T)
-

Reconstructed mix

—> Lrecon

R B. Torres, G. Peeters and G. Richard, "The Inverse Drum Machine: Source Separation Through Joint Transcription and Analysis-by-Synthesis," in /EEE

Transactions on Audio, Speech and Language Processing, vol. 34, pp. 84-95, 2026, Preprint accessible at:https://hal.science/hal-05056592/document
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6. Richard ° Training: end-to-end training using 3 combined losses
i Liotal = Lrecon + Lirans + Lemb

deep learning

* Reconstruction loss : The input mixture x is modelled by recomposing the individual
drum tracks by seguencing onset activations with generated one-shot samples.
Individual tracks are mixed together to obtain a reconstructed mixture x"synth.

Lo (%, Tayn) = 3 | XD = [KO|| + 108 (X)) ~ log(XD))|
vyel

‘ |

°* Transcription loss: is the Binary Cross-Entropy loss between the estimated onsets
and the ground-truth onsets for all drum instruments.

°* Mixture Embedding loss: is essentially a drum kit classification loss, implemented as
the Cross-Entropy between the estimated mixture embedding.
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Inverse Drum machine

* A focus on the one-shot synthesis model

* White noise is fed to a Temporal Convolutional Network (TCN) conditioned via Feature-
wise Linear Modulation (FiLM) on a conditioning vector ¢, which has disentangled
instrument class/timbre dimensions.

(K K +Dp

Conditioning (c) s 2
Class one-hot { ’:' ﬁ Horse MLP
g [ +(Ka R) (81
TCN

Mixture embedding e
| Causal (zero) pad Gen.Envelope

' (K, R)

One-shot ) Envelopes(K, R)
synth Norm[ 1 1] i
R)

\ )

-~
~~\ ’

V
P’- w1 One-shots (w)
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Inverse Drum machine: some results
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Inverse Drum machine: some results
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Inverse Drum machine: demo

e A full demo page at : https://bernardo-torres.github.io/projects/inverse-drum-machine/

.. + code..
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To conclude

* As in many domains, the prominence of deep learning solutions is progressing ...

. but | believe in hybrid methods, hybrid deep learning ... which bring

Interpretability, Controllability, Explainability
* Hybrid model becomes controllable by human-understandable parameters
* Hybrid model can lead to unsupervised methods

Frugality: gain of several orders of magnitude in the need of data and model complexity

Can be applied to many audio processing problems

* Exploiting room acoustics for Audio dereverberation [1],

* Exploiting physical/signal models for music synthesis [2],

* Exploiting “audio class specific’ codebooks for audio compression and separation [3]
* Exploiting key speech attributes for controlled speech synthesis and transformation [4]

[1] Louis Bahrman, Mathieu Fontaine, Gael Richard. A Hybrid Model for Weakly-Supervised Speech Dereverberation. /EEE ICASSP 2025, (hal-04931672)

[2] Lenny Renault, Rémi Mignot, Axel Roebel. Differentiable Piano Model for MIDI-to-Audio Performance Synthesis. Int. Conf.on Digital Audio Effects (DAFx20in22), Sep 2022, Vienna,

[3] Xiaoyu Bie, Xubo Liu, Gaél Richard. Learning Source Disentanglement in Neural Audio Codec. /EEE ICASSP 2025 , (hal-04902131)

[4] Samir Sadok, Simon Leglaive, Laurent Girin, Gaél Richard, Xavier Alameda-Pineda. AnCoGen: Analysis, Control and Generation of Speech with a Masked Autoencoder. /EEE ICASSP 2025 , {hal-
04891286
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Thank you !!
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