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Domain
● Speech
● Music
● Environmental sounds

Applications
● Classification / Understanding
● Generation
● Editing / Modification 

No LLM!

Context: Machine Learning for Audio
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Scenario: Sound Recomposition

https://docs.google.com/file/d/17RnPayFmeaVLBnqwpYxcmmEi7jnourny/preview?resourcekey=0-kDNVJR5JcL1i4pDzX97CBQ
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● Represents sound mixture as a collection of discrete events

● Each row associated with free-text label (Action + Class)

● Could be generated by an Audio Event Classifier

Contribution: Event Roll
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● Enhancement combines sound separation and generation
○ Identify low-level target event in the input
○ Regenerate missing details to synthesize output

● How to specify “Enhancement”?
○ Constant gain applied to input?
○ Constant output target level (e.g. 10 dB) regardless of input level
○ (allow user to specify)

Contribution: Enhancement
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● Input sound embedding + conditioning encodes to conditioning embedding

● Autoregressive encoder-decoder transformer trained to generate RVQ tokens

Recomposer Model

Autoregressive Image Generation using Residual Quantization, Lee et al, CVPR 2022

matmul

https://openaccess.thecvf.com/content/CVPR2022/papers/Lee_Autoregressive_Image_Generation_Using_Residual_Quantization_CVPR_2022_paper.pdf
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● Instruction text is embedded as general text
○ Action and Target class confounded…
○ Permits semantic adjacency

● matmul((embedding, event), (event, time))

       → (embedding, time)

○ All edits summed into 
a single edit-conditioning vector per time step

Recomposer Model: Edit conditioning

matmul

✕

instruction text

insert door
enhance liquid
delete click
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Synthetic Target Data

Training examples as Background + Target

● Background from AudioSet (Strong Labeled) (10 sec 
clips)

○ Selected for Complexity (> 2 classes) 
and Time coverage (> 9 sec nonsilent)

○ 168k clips

● Target events from Freesound
○ Matched by tags + AudioSet classifier
○ Automatic trimming to isolated events

of 0.2 .. 2 sec
○ 16k training events 

from 40 “event-like” AudioSet classes
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● Synthetic data {input, output} pairs formed by mixing Target + Background
● Fix Target-to-Background Ratio (TBR) vs. the overlapping background

Synthetic Target Data (cont’d)
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● Training: Generate on-the-fly {input, output} pairs

○ Two “Targets” per example
■ Each chosen from Enhance, Delete, Insert, or None (EDIN)
■ No time overlap between targets

○ Targets inserted at 10 (± 3) dB TBR
■ Loud enough to measure, still plausible

○ Enhancement inputs at -6 (± 3) dB TBR

Synthetic Target Data details
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● Constant baseline “model distortion”  - but differences are not audible 

Metrics: Multi-Scale Spectral Distortion (MSD)

DDSP: Differentiable Digital Signal Processing, Engel et al., ICLR 2020.

Desired
output

Model
output

Absolute
difference

.. sum is 
~MSD

https://arxiv.org/abs/2001.04643
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● Target event occupies ~10% of time

● “Model distortion” over remainder 
can dominate metrics

● Framewise metrics allow 
decomposition by time range
○ Use ground-truth target region 

to calculate separate metrics for 
modified & unmodified regions

Metrics: Modified vs. Unmodified regions
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● Look at histograms of metrics across eval set
○ Compare (Desired - Model_output)

and (Desired - Unprocessed)
○ Calculate metrics over Whole_clip vs. Modified_region

● “Model distortion” overwhelms (Desired - Model_output) / Whole_clip
Restricting to Modified_region reveals benefit:

Metrics: Modified vs. Unmodified regions

Whole_clip metrics:
Model_output worse 
than Unprocessed

Modified_region metrics:
Model_output better
 than Unprocessed

(Desired - Model) / Whole
(Desired - Unproc) / Whole
(Desired - Model) / Modified
(Desired - Unproc) / Modified
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● KLD compares framewise classifier outputs - needed to evaluate Insert
○ YAMNet AudioSet classifier evaluated every 100 ms
○ Normalize each frame across class, calculate KL divergence, average along time

Metrics: Classifier KL Divergence (KLD)

Input

Processed

Classification
(input)

Classification
(processed)

Framewise
Classifier

KL Divergence

AudioGen: Textually Guided Audio Generation, Kreuk et al., ICLR 2023.

Classifier 
context window

https://arxiv.org/abs/2209.15352
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● Focus on generation-to-separation transition 
in Enhancement

● Training:
○ One Enhancement target per example
○ Inputs ranged over -30 to 0 dB TBR
○ Output always at +15 dB 

(minimize uncertainty)

● Evaluation:
○ Metrics improve with TBR
○ Improvement-over-unprocessed 

peaks at ~ -15 dB TBR (for MSD)
○ (KLD has no peak)

Results: Varying Input Level for Enhancement

mostly 
generation

mostly 
separation

2.5dB
better

2.5dB
better

(Enhancement)
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● Nontarget input is perfect - distances of 0
● Nontarget estimate is “model distortion” - limitation of copying
● Target estimate minus input gives improvement from processing

○ For MSD, Delete does well, Insert is made worse (specific output is unknown)
○ For KLD, Insert reveals benefit (because target class is specified)
○ Enhance results are for ~ -6 dB TBR inputs, limited headroom

Results: Overall Performance

(lower is 
better)

Target

Nontarget

input
estimate

input
estimate
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● Results show improvement - we’re done?
○ Or is there more insight?

● Conditioning has 3 components
○ Timing (Event Roll)
○ Action (Delete/Insert/Enhance)
○ Class  (Description of target)

● Train 6 models with partial conditioning

● Evaluate with Decoy examples
○ Minimize cues in input

Conditioning Ablation
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● Initial results: Action (and Class) have little impact
○ Model can infer them from input?

Conditioning Ablation

(non-decoy results)
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Each sample input has one event (or decoy) at 10 dB TBR

● Delete: Output has no event

● Insert: Output has a second 
event (event in input is decoy)

● Enhance: Input has decoy 
plus -6dB TBR target event

⇒ Model cannot guess action from input
● Model was trained with 0 .. 2 edits per sample

Decoy Data
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Results: MSD

Timing
Action 
Class 
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● Unprocessed baseline (dotted): Insert & Delete same (4.8), Enhance better (3.3)
● Unmodified region (nontarget, pale bars): “Model distortion” floor (1.3)
● Modified region (target, dark bars): Delete ~ Enhance (2.5), Insert much worse (5.0)

Results: MSD - Full-Conditioning
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● Remove Class (T / A / - ) → Insert worse, Delete & Enhance unchanged?
● Remove Action (T / - / C) → Delete & Enhance worse (confused?)
● Remove Timing (- / A / C) → Delete, Enhance (and nontarget) worse

Results: MSD - Conditioning Ablation
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● Unprocessed baseline (dotted): Delete ≈ Enhance, but Insert much worse
● Processed: Delete better than Enhance
● Insert benefits from Class

Results: KLD
MSD KLD
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● Richer control of generation
○ More structured attributes (loudness, pitch, reverberation)
○ Richer text-to-audio generation

■ training data?

● Broader conditioning e.g. Video
○ Audio-Video joint generation 

● Sound Transformation …

Future Work
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● Input audio contains a given source_class
● Run an enhancement-only Recomposer model 

to `enhance <destination_class>` 
at times when the source_class occurs.
○ The model was never trained to do this

Sound Transformation 
via Cross-Class Enhancement

Clip ID
0239dc6ce0480dc9
_30000@4598

0253eeff2c4b4f68_
230000@5512

0117d601eb6ae57
1_10000@4251

33ad41049a6fbf1f_
30000@3207

Source class Human locomotion Cough Laughter Ring

Destination class Digestive Dog Dog Bird

Input audio

Output audio
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● Autoregressive Encoder-Decoder models can edit scene details
○ Event roll as a precise way to specify timing

● Ablations reveal complex interactions
○ Each part of the conditioning has a different effect 

● Future work:
○ Richer control of generated sound events
○ Additional conditioning, e.g. video

Conclusions


